asier-gutierrez commited on
Commit
5b49403
1 Parent(s): 616bba1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md CHANGED
@@ -1,3 +1,106 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: "ca"
3
+ tags:
4
+ - masked-lm
5
+ - RoBERTa-base-ca-v2
6
+ - catalan
7
+ widget:
8
+ - text: "El Català és una llengua molt <mask>."
9
+ - text: "Salvador Dalí va viure a <mask>."
10
+ - text: "La Costa Brava té les millors <mask> d'Espanya."
11
+ - text: "El cacaolat és un batut de <mask>."
12
+ - text: "<mask> és la capital de la Garrotxa."
13
+ - text: "Vaig al <mask> a buscar bolets."
14
+ - text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat."
15
+ - text: "Catalunya és una referència en <mask> a nivell europeu."
16
  license: apache-2.0
17
  ---
18
+
19
+ ## Model description
20
+
21
+ RoBERTa-ca-v2 is a transformer-based masked language model for the Catalan language.
22
+ It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model
23
+ and has been trained on a medium-size corpus collected from publicly available corpora and crawlers.
24
+
25
+ ## Tokenization and pretraining
26
+
27
+ The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2)
28
+ used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens.
29
+ The RoBERTa-ca-v2 pretraining consists of a masked language model training that follows the approach employed for the RoBERTa base model
30
+ with the same hyperparameters as in the original work.
31
+ The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM.
32
+
33
+ ## Training corpora and preprocessing
34
+
35
+ The training corpus consists of several corpora gathered from web crawling and public corpora.
36
+
37
+
38
+ | Corpus | Size in GB |
39
+ |-------------------------|------------|
40
+ | BNE-ca | 13.00 |
41
+ | Wikipedia | 1.10 |
42
+ | DOGC | 0.78 |
43
+ | Catalan Open Subtitles | 0.02 |
44
+ | Catalan Oscar | 4.00 |
45
+ | CaWaC | 3.60 |
46
+ | Cat. General Crawling | 2.50 |
47
+ | Cat. Goverment Crawling | 0.24 |
48
+ | ACN | 0.42 |
49
+ | Padicat | 0.63 |
50
+ | RacoCatalá | 8.10 |
51
+ | Nació Digital | 0.42 |
52
+ | Vilaweb | 0.06 |
53
+ | Tweets | 0.02 |
54
+
55
+ ## Evaluation
56
+
57
+ ### CLUB benchmark
58
+
59
+ The BERTa model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB),
60
+ that has been created along with the model.
61
+
62
+ It contains the following tasks and their related datasets:
63
+
64
+ 1. Part-of-Speech Tagging (POS)
65
+
66
+ Catalan-Ancora: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus
67
+
68
+ 2. Named Entity Recognition (NER)
69
+
70
+ **[AnCora Catalan 2.0.0](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version,
71
+ filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format
72
+
73
+ 3. Text Classification (TC)
74
+
75
+ **[TeCla](https://doi.org/10.5281/zenodo.4627197)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus
76
+
77
+ 4. Semantic Textual Similarity (STS)
78
+
79
+ **[Catalan semantic textual similarity](https://doi.org/10.5281/zenodo.4529183)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them,
80
+ scraped from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349)
81
+
82
+ 5. Question Answering (QA):
83
+
84
+ **[ViquiQuAD](https://doi.org/10.5281/zenodo.4562344)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan.
85
+
86
+ **[XQuAD](https://doi.org/10.5281/zenodo.4526223)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_
87
+
88
+ Here are the train/dev/test splits of the datasets:
89
+
90
+ | Task | NER (F1) | POS (F1) | STS (Pearson) | TC (accuracy) | QA (ViquiQuAD) (F1/EM) | QA (XQuAD) (F1/EM) |
91
+ | ------------|:-------------:| -----:|:------|:-------|:------|:----|
92
+ | BERTa | **89.80** | **99.10** | **80.00** | **83.40** | **88.00/72.29** | **71.50** |
93
+ | BERTa | 88.13 | 98.97 | 79.73 | 74.16 | 86.97/72.29 | 68.89/48.87 |
94
+ | mBERT | 86.38 | 98.82 | 76.34 | 70.56 | 86.97/72.22 | 67.15/46.51 |
95
+ | XLM-RoBERTa | 87.66 | 98.89 | 75.40 | 71.68 | 85.50/70.47 | 67.10/46.42 |
96
+ | WikiBERT-ca | 77.66 | 97.60 | 77.18 | 73.22 | 85.45/70.75 | 65.21/36.60 |
97
+
98
+ ### Results
99
+
100
+ ## Intended uses & limitations
101
+ The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section)
102
+ However, the is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification or Named Entity Recognition.
103
+
104
+
105
+ ## Funding
106
+ This work was funded by the Generalitat de Catalunya within the framework of the AINA language technologies plan.