gonzalez-agirre
commited on
Commit
•
8d41c7d
1
Parent(s):
4fd73b4
Update README.md
Browse files
README.md
CHANGED
@@ -74,7 +74,7 @@ tokenizer_hf = AutoTokenizer.from_pretrained('projecte-aina/roberta-base-ca-v2')
|
|
74 |
model = AutoModelForMaskedLM.from_pretrained('projecte-aina/roberta-base-ca-v2')
|
75 |
model.eval()
|
76 |
pipeline = FillMaskPipeline(model, tokenizer_hf)
|
77 |
-
text = f"Em dic <mask>."
|
78 |
res_hf = pipeline(text)
|
79 |
pprint([r['token_str'] for r in res_hf])
|
80 |
```
|
@@ -131,18 +131,17 @@ It contains the following tasks and their related datasets:
|
|
131 |
|
132 |
3. Text Classification (TC)
|
133 |
|
134 |
-
**[TeCla](https://huggingface.co/datasets/projecte-aina/tecla)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus, with 30 labels
|
135 |
|
136 |
-
|
137 |
|
138 |
-
**[
|
139 |
|
140 |
-
|
141 |
|
142 |
-
**[Catalan semantic textual similarity](https://huggingface.co/datasets/projecte-aina/sts-ca)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them,
|
143 |
-
scraped from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus)
|
144 |
|
145 |
-
|
146 |
|
147 |
**[VilaQuAD](https://huggingface.co/datasets/projecte-aina/vilaquad)**: contains 6,282 pairs of questions and answers, outsourced from 2095 Catalan language articles from VilaWeb newswire text.
|
148 |
|
@@ -150,7 +149,7 @@ It contains the following tasks and their related datasets:
|
|
150 |
|
151 |
**[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa)**: an aggregation of 2 previous datasets (VilaQuAD and ViquiQuAD), 21,427 pairs of Q/A balanced by type of question, containing one question and one answer per context, although the contexts can repeat multiple times.
|
152 |
|
153 |
-
**[XQuAD](https://huggingface.co/datasets/projecte-aina/xquad-ca)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_
|
154 |
|
155 |
Here are the train/dev/test splits of the datasets:
|
156 |
|
@@ -160,13 +159,14 @@ Here are the train/dev/test splits of the datasets:
|
|
160 |
| POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
|
161 |
| STS | 3,073 | 2,073 | 500 | 500 |
|
162 |
| TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786|
|
|
|
163 |
| QA (VilaQuAD) | 6,282 | 3,882 | 1,200 | 1,200 |
|
164 |
| QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 |
|
165 |
| QA (CatalanQA) | 21,427 | 17,135 | 2,157 | 2,135 |
|
166 |
|
167 |
### Evaluation Results
|
168 |
|
169 |
-
| Task | NER (F1) | POS (F1) | STS (
|
170 |
| ------------|:-------------:| -----:|:------|:------|:-------|:------|:----|:----|:----|
|
171 |
| RoBERTa-base-ca-v2 | **89.45** | 99.09 | 79.07 | **74.26** | **83.14** | **87.74/72.58** | **88.72/75.91** | **89.50**/76.63 | **73.64/55.42** |
|
172 |
| BERTa | 88.94 | **99.10** | **80.19** | 73.65 | 79.26 | 85.93/70.58 | 87.12/73.11 | 89.17/**77.14** | 69.20/51.47 |
|
|
|
74 |
model = AutoModelForMaskedLM.from_pretrained('projecte-aina/roberta-base-ca-v2')
|
75 |
model.eval()
|
76 |
pipeline = FillMaskPipeline(model, tokenizer_hf)
|
77 |
+
text = f"Em dic <mask>."137,775
|
78 |
res_hf = pipeline(text)
|
79 |
pprint([r['token_str'] for r in res_hf])
|
80 |
```
|
|
|
131 |
|
132 |
3. Text Classification (TC)
|
133 |
|
134 |
+
**[TeCla](https://huggingface.co/datasets/projecte-aina/tecla)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus, with 30 labels.
|
135 |
|
136 |
+
4. Textual Entailment (TE)
|
137 |
|
138 |
+
**[TeCa](https://huggingface.co/datasets/projecte-aina/teca)**: consisting of 21,163 pairs of premises and hypotheses, annotated according to the inference relation they have (implication, contradiction, or neutral), extracted from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus).
|
139 |
|
140 |
+
5. Semantic Textual Similarity (STS)
|
141 |
|
142 |
+
**[Catalan semantic textual similarity](https://huggingface.co/datasets/projecte-aina/sts-ca)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them, scraped from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus).
|
|
|
143 |
|
144 |
+
6. Question Answering (QA):
|
145 |
|
146 |
**[VilaQuAD](https://huggingface.co/datasets/projecte-aina/vilaquad)**: contains 6,282 pairs of questions and answers, outsourced from 2095 Catalan language articles from VilaWeb newswire text.
|
147 |
|
|
|
149 |
|
150 |
**[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa)**: an aggregation of 2 previous datasets (VilaQuAD and ViquiQuAD), 21,427 pairs of Q/A balanced by type of question, containing one question and one answer per context, although the contexts can repeat multiple times.
|
151 |
|
152 |
+
**[XQuAD](https://huggingface.co/datasets/projecte-aina/xquad-ca)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_.
|
153 |
|
154 |
Here are the train/dev/test splits of the datasets:
|
155 |
|
|
|
159 |
| POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
|
160 |
| STS | 3,073 | 2,073 | 500 | 500 |
|
161 |
| TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786|
|
162 |
+
| TE (TeCa) | 21,163 | 16,930 | 2,116 | 2,117
|
163 |
| QA (VilaQuAD) | 6,282 | 3,882 | 1,200 | 1,200 |
|
164 |
| QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 |
|
165 |
| QA (CatalanQA) | 21,427 | 17,135 | 2,157 | 2,135 |
|
166 |
|
167 |
### Evaluation Results
|
168 |
|
169 |
+
| Task | NER (F1) | POS (F1) | STS (Comb) | TC (Acc.) | TE (Acc.) | QA (Vilaquad) (F1/EM)| QA (ViquiQuAD) (F1/EM) | QA (CatalanQA) (F1/EM) | QA (XQuAD-Ca)<sup>1</sup> (F1/EM) |
|
170 |
| ------------|:-------------:| -----:|:------|:------|:-------|:------|:----|:----|:----|
|
171 |
| RoBERTa-base-ca-v2 | **89.45** | 99.09 | 79.07 | **74.26** | **83.14** | **87.74/72.58** | **88.72/75.91** | **89.50**/76.63 | **73.64/55.42** |
|
172 |
| BERTa | 88.94 | **99.10** | **80.19** | 73.65 | 79.26 | 85.93/70.58 | 87.12/73.11 | 89.17/**77.14** | 69.20/51.47 |
|