gonzalez-agirre commited on
Commit
8d41c7d
1 Parent(s): 4fd73b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -74,7 +74,7 @@ tokenizer_hf = AutoTokenizer.from_pretrained('projecte-aina/roberta-base-ca-v2')
74
  model = AutoModelForMaskedLM.from_pretrained('projecte-aina/roberta-base-ca-v2')
75
  model.eval()
76
  pipeline = FillMaskPipeline(model, tokenizer_hf)
77
- text = f"Em dic <mask>."
78
  res_hf = pipeline(text)
79
  pprint([r['token_str'] for r in res_hf])
80
  ```
@@ -131,18 +131,17 @@ It contains the following tasks and their related datasets:
131
 
132
  3. Text Classification (TC)
133
 
134
- **[TeCla](https://huggingface.co/datasets/projecte-aina/tecla)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus, with 30 labels
135
 
136
- 3. Text Classification (TC)
137
 
138
- **[TeCla](https://huggingface.co/datasets/projecte-aina/tecla)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus, with 30 labels
139
 
140
- 4. Semantic Textual Similarity (STS)
141
 
142
- **[Catalan semantic textual similarity](https://huggingface.co/datasets/projecte-aina/sts-ca)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them,
143
- scraped from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus)
144
 
145
- 5. Question Answering (QA):
146
 
147
  **[VilaQuAD](https://huggingface.co/datasets/projecte-aina/vilaquad)**: contains 6,282 pairs of questions and answers, outsourced from 2095 Catalan language articles from VilaWeb newswire text.
148
 
@@ -150,7 +149,7 @@ It contains the following tasks and their related datasets:
150
 
151
  **[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa)**: an aggregation of 2 previous datasets (VilaQuAD and ViquiQuAD), 21,427 pairs of Q/A balanced by type of question, containing one question and one answer per context, although the contexts can repeat multiple times.
152
 
153
- **[XQuAD](https://huggingface.co/datasets/projecte-aina/xquad-ca)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_
154
 
155
  Here are the train/dev/test splits of the datasets:
156
 
@@ -160,13 +159,14 @@ Here are the train/dev/test splits of the datasets:
160
  | POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
161
  | STS | 3,073 | 2,073 | 500 | 500 |
162
  | TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786|
 
163
  | QA (VilaQuAD) | 6,282 | 3,882 | 1,200 | 1,200 |
164
  | QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 |
165
  | QA (CatalanQA) | 21,427 | 17,135 | 2,157 | 2,135 |
166
 
167
  ### Evaluation Results
168
 
169
- | Task | NER (F1) | POS (F1) | STS (Combined) | TC (Acc.) | TE (Acc.) | QA (Vilaquad) (F1/EM)| QA (ViquiQuAD) (F1/EM) | QA (CatalanQA) (F1/EM) | QA (XQuAD-Ca)<sup>1</sup> (F1/EM) |
170
  | ------------|:-------------:| -----:|:------|:------|:-------|:------|:----|:----|:----|
171
  | RoBERTa-base-ca-v2 | **89.45** | 99.09 | 79.07 | **74.26** | **83.14** | **87.74/72.58** | **88.72/75.91** | **89.50**/76.63 | **73.64/55.42** |
172
  | BERTa | 88.94 | **99.10** | **80.19** | 73.65 | 79.26 | 85.93/70.58 | 87.12/73.11 | 89.17/**77.14** | 69.20/51.47 |
 
74
  model = AutoModelForMaskedLM.from_pretrained('projecte-aina/roberta-base-ca-v2')
75
  model.eval()
76
  pipeline = FillMaskPipeline(model, tokenizer_hf)
77
+ text = f"Em dic <mask>."137,775
78
  res_hf = pipeline(text)
79
  pprint([r['token_str'] for r in res_hf])
80
  ```
 
131
 
132
  3. Text Classification (TC)
133
 
134
+ **[TeCla](https://huggingface.co/datasets/projecte-aina/tecla)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus, with 30 labels.
135
 
136
+ 4. Textual Entailment (TE)
137
 
138
+ **[TeCa](https://huggingface.co/datasets/projecte-aina/teca)**: consisting of 21,163 pairs of premises and hypotheses, annotated according to the inference relation they have (implication, contradiction, or neutral), extracted from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus).
139
 
140
+ 5. Semantic Textual Similarity (STS)
141
 
142
+ **[Catalan semantic textual similarity](https://huggingface.co/datasets/projecte-aina/sts-ca)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them, scraped from the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus).
 
143
 
144
+ 6. Question Answering (QA):
145
 
146
  **[VilaQuAD](https://huggingface.co/datasets/projecte-aina/vilaquad)**: contains 6,282 pairs of questions and answers, outsourced from 2095 Catalan language articles from VilaWeb newswire text.
147
 
 
149
 
150
  **[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa)**: an aggregation of 2 previous datasets (VilaQuAD and ViquiQuAD), 21,427 pairs of Q/A balanced by type of question, containing one question and one answer per context, although the contexts can repeat multiple times.
151
 
152
+ **[XQuAD](https://huggingface.co/datasets/projecte-aina/xquad-ca)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_.
153
 
154
  Here are the train/dev/test splits of the datasets:
155
 
 
159
  | POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
160
  | STS | 3,073 | 2,073 | 500 | 500 |
161
  | TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786|
162
+ | TE (TeCa) | 21,163 | 16,930 | 2,116 | 2,117
163
  | QA (VilaQuAD) | 6,282 | 3,882 | 1,200 | 1,200 |
164
  | QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 |
165
  | QA (CatalanQA) | 21,427 | 17,135 | 2,157 | 2,135 |
166
 
167
  ### Evaluation Results
168
 
169
+ | Task | NER (F1) | POS (F1) | STS (Comb) | TC (Acc.) | TE (Acc.) | QA (Vilaquad) (F1/EM)| QA (ViquiQuAD) (F1/EM) | QA (CatalanQA) (F1/EM) | QA (XQuAD-Ca)<sup>1</sup> (F1/EM) |
170
  | ------------|:-------------:| -----:|:------|:------|:-------|:------|:----|:----|:----|
171
  | RoBERTa-base-ca-v2 | **89.45** | 99.09 | 79.07 | **74.26** | **83.14** | **87.74/72.58** | **88.72/75.91** | **89.50**/76.63 | **73.64/55.42** |
172
  | BERTa | 88.94 | **99.10** | **80.19** | 73.65 | 79.26 | 85.93/70.58 | 87.12/73.11 | 89.17/**77.14** | 69.20/51.47 |