File size: 2,014 Bytes
8696c48
 
 
29cda7c
 
 
 
8696c48
 
29cda7c
8696c48
 
 
 
 
 
 
 
82d15aa
8696c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a0354
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
language:
- en
license: mit
tags:
- NLI
- deberta-v3
datasets:
- mnli
- facebook/anli
- fever
- wanli
- ling
- amazonpolarity
- imdb
- appreviews
inference: false
pipeline_tag: zero-shot-classification
base_model: MoritzLaurer/deberta-v3-base-zeroshot-v1
---

# ONNX version of MoritzLaurer/deberta-v3-base-zeroshot-v1

**This model is a conversion of [MoritzLaurer/deberta-v3-base-zeroshot-v1](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v1) to ONNX** format using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.

`MoritzLaurer/deberta-v3-large-zeroshot-v1` is designed for zero-shot classification, capable of determining whether a hypothesis is `true` or `not_true` based on a text, a format based on Natural Language Inference (NLI).

## Usage

Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.

```python
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline


tokenizer = AutoTokenizer.from_pretrained("laiyer/deberta-v3-base-zeroshot-v1-onnx")
model = ORTModelForSequenceClassification.from_pretrained("laiyer/deberta-v3-base-zeroshot-v1-onnx")
classifier = pipeline(
    task="zero-shot-classification",
    model=model,
    tokenizer=tokenizer,
)

classifier_output = classifier("Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.", ["mobile", "website", "billing", "account access"])
print(classifier_output)
```

### LLM Guard

[Ban Topics scanner](https://llm-guard.com/input_scanners/ban_topics/)

## Community

Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, 
or engage in discussions about LLM security!

<a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w"><img src="https://github.com/laiyer-ai/llm-guard/blob/main/docs/assets/join-our-slack-community.png?raw=true" width="200"></a>