--- pipeline_tag: text-classification language: en datasets: - valurank/wikirev-bias inference: false tags: - bias - distilroberta --- # ONNX version of valurank/distilroberta-bias **This model is a conversion of [valurank/distilroberta-bias](https://huggingface.co/valurank/distilroberta-bias) to ONNX** format. It is designed to detect biases in text using the distilled version of the RoBERTa model. The model was converted to ONNX using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library. ## Model Architecture **Base Model**: DistilRoBERTa, a distilled version of the RoBERTa model that is optimized for faster performance while maintaining similar accuracy. **Modifications**: The model is converted to ONNX format with no additional changes. ## Usage ### Optimum Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed. ```python from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("laiyer/distilroberta-bias-onnx") model = ORTModelForSequenceClassification.from_pretrained("laiyer/distilroberta-bias-onnx") classifier = pipeline( task="text-classification", model=model, tokenizer=tokenizer, ) classifier_output = classifier("Your text to analyze for bias.") score = (classifier_output[0]["score"] if classifier_output[0]["label"] == "BIASED" else 1 - classifier_output[0]["score"]) ``` ### LLM Guard [Bias scanner](https://llm-guard.com/output_scanners/bias/) ## Community Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, or engage in discussions about LLM security!