File size: 5,059 Bytes
bbaf732 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# -*- coding: utf-8 -*
#!pip install transformers
#!pip install pandas
#!pip install numpy
#!pip install SentencePiece
import sys, argparse
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer
import pandas as pd
import os
import numpy as np
from tqdm.auto import tqdm, trange
import gc
from datetime import datetime
import time
st = time.time() #start time
parser = argparse.ArgumentParser()
parser.add_argument("-n","--model_name", type=str, default="d2t_model", required=False, help="Specify model name")
parser.add_argument("-e","--epochs", type=int, default=100, required=False, help="Specify training epochs")
args = parser.parse_args()
model_name = args.model_name
epochs = args.epochs
print("Model name: " + model_name + " Epochs: " + str(epochs))
"""# Modelo T5
Importamos o modelo preadestrado
"""
model = T5ForConditionalGeneration.from_pretrained('google/mt5-base')
tokenizer = T5Tokenizer.from_pretrained('google/mt5-base')
model.cuda();
optimizer = torch.optim.Adam(params=[p for p in model.parameters() if p.requires_grad], lr=1e-5)
#Load dataset (dataset-gl.csv or dataset-es.csv)
all_data = pd.read_csv('./datasets/dataset-gl.csv', encoding="latin-1")
#seleccionamos 2733 registros para training (seria la particion 70-30 en dataset-es.csv)
#en dataset-gl.csv contamos con mas registros, por lo que en test habria 500 en lugar de 300 casos
train_split = all_data.iloc[:2733, :]
test_split = all_data.iloc[2733:, :]
#Clean dataset rows
train_split=train_split.dropna()
train_split=train_split.dropna(axis=0)
train_split=train_split.reset_index()
print(torch.cuda.list_gpu_processes())
def split_batches(df, batch_size):
batches = []
for i in range(0, len(df), batch_size):
if (i+batch_size) > len(df):
batches.append(df[i:])
else:
batches.append(df[i: i+batch_size])
return batches
def cleanup():
gc.collect()
torch.cuda.empty_cache()
cleanup()
optimizer.param_groups[0]['lr'] = 1e-5
"""# Adestramento"""
model.train();
batch_size = 8
max_len = 384
accumulation_steps = 1
save_steps = 1
epochs_tq = trange(epochs) #epochs
window = 4000
ewm = 0
errors = 0
cleanup()
batches = split_batches(train_split, batch_size)
for i in epochs_tq:
print("Epoch:", i)
batch_count = 0
for batch in batches:
batch_count += 1
print("Batch:", batch_count)
xx = batch.table.values.tolist()
yy = batch.table.values.tolist()
try:
x = tokenizer(xx, return_tensors='pt', padding=True, truncation=True, max_length=max_len).to(model.device)
y = tokenizer(yy, return_tensors='pt', padding=True, truncation=True, max_length=max_len).to(model.device)
# do not force the model to predict pad tokens
y.input_ids[y.input_ids==0] = -100
loss = model(
input_ids=x.input_ids,
attention_mask=x.attention_mask,
labels=y.input_ids,
decoder_attention_mask=y.attention_mask,
return_dict=True
).loss
loss.backward()
except RuntimeError as e:
errors += 1
print("ERROR")
print(i, x.input_ids.shape[1], y.input_ids.shape[1], e)
loss = None
cleanup()
continue
w = 1 / min(i+1, window)
ewm = ewm * (1-w) + loss.item() * w
epochs_tq.set_description(f'loss: {ewm}')
if i % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
cleanup()
if i % window == 0 and i > 0:
print(ewm, errors)
errors = 0
cleanup()
# optimizer.param_groups[0]['lr'] *= 0.999
if i % save_steps == 0 and i > 0:
model.save_pretrained(model_name + "_" + str(epochs))
tokenizer.save_pretrained(model_name + "_" + str(epochs))
print('saving...', i, optimizer.param_groups[0]['lr'])
model.save_pretrained(model_name + "_" + str(epochs))
tokenizer.save_pretrained(model_name + "_" + str(epochs))
total_time = time.time() - st
print("Training time:", time.strftime("%H:%M:%S", time.gmtime(total_time)))
"""# Test"""
model.eval();
def generate(text):
x = tokenizer(text, return_tensors='pt', padding=True).to(model.device)
out = model.generate(**x, do_sample=False, num_beams=10, max_length=100)
return tokenizer.decode(out[0], skip_special_tokens=True)
with open(f"{model_name}_{epochs}_predictions_{datetime.now()}.txt", "w") as f:
f.write("Training time:" + str(time.strftime("%H:%M:%S", time.gmtime(total_time))))
for index, row in test_split.iterrows():
text_id = str(row["id"])
text1 = str(row["table"])
text2 = str(row["caption"])
f.write(text_id + "\n" + text1 + "\n")
print(text_id + "\n" + text1)
f.write("Prediction:\n")
f.write(generate(text1) + "\n")
print(generate(text1))
f.write("Truth:\n")
f.write(text2 + "\n\n")
print(text2)
|