--- license: mit --- **Descrición do Modelo / Model description** Modelo feito con OpenNMT para o par español-galego utilizando unha arquitectura transformer / Model developed with OpenNMT for the Spanish-Galician pair using a transformer architecture. **Como utilizar** + Abrir terminal bash / Open bash terminal + Instalar / Installing [Python 3.9](https://www.python.org/downloads/release/python-390/) + Instalar / Installing [Open NMT toolkit v.2.2](https://github.com/OpenNMT/OpenNMT-py) + Traducir un input_text utilizando o modelo NOS-MT-es-gl co seguinte comando / Translating an input_text using the NOS-MT-en-gl model with the following command: ```bash onmt_translate -src input_text -model NOS-MT-es-gl -output ./output_file.txt -replace_unk -phrase_table phrase_table-es-gl.txt -gpu 0 ``` + O resultado da tradución estará no PATH indicado no flag -output / The result of the translation will be in the PATH indicated by the -output flag. **Adestramento / Training** No adestramento, utilizamos corpora auténticos e sintéticos. Os primeiros son corpora de traducións feitas directamente por tradutores humanos. Os segundos son corpora de traducións español-portugués e inglés-portugués, que convertemos en español-galego e inglés-galego a través da tradución automática portugués-galego con Opentrad/Apertium e transliteración para palabras fóra de vocabulário / In the training we have used authentic and synthetic corpora. The former are corpora of translations directly produced by human translators. The latter are corpora of Spanish-Portuguese and English-Portuguese translations, which we have converted into Spanish-Galician and English-Galician by means of Portuguese-Galician translation with Opentrad/Apertium and transliteration for out-of-vocabulary words. **Procedemento de adestramento** + Tokenization dos datasets feita co tokenizador de linguakit https://github.com/citiususc/Linguakit + O vocabulario para os modelos foi xerado a través do script [learn_bpe.py](https://github.com/OpenNMT/OpenNMT-py/blob/master/tools/learn_bpe.py) da open NMT + Usando o .yaml neste repositorio pode replicar o proceso de adestramento do seguinte xeito ```bash onmt_build_vocab -config bpe-es-gl_emb.yaml -n_sample 100000 onmt_train -config bpe-es-gl_emb.yaml ``` **Hiperparámetros** Os parámetros usados para o desenvolvimento do modelo poden ser consultados directamente no mesmo ficheiro .yaml bpe-es-gl_emb.yaml **Avaliación** A avalación dos modelos é feita cunha mistura de tests desenvolvidos internamente (gold1, gold2, test-suite) con outros datasets disponíbeis en galego (Flores). | GOLD 1 | GOLD 2 | FLORES | TEST-SUITE| | ------------- |:-------------:| -------:|----------:| | 79.6 | 43.3 | 21.8 | 74.3 | **Información adicional** Licensing information Apache License, Version 2.0 **Financiamento** This research was funded by the project "Nós: Galician in the society and economy of artificial intelligence", agreement between Xunta de Galicia and University of Santiago de Compostela, and grant ED431G2019/04 by the Galician Ministry of Education, University and Professional Training, and the European Regional Development Fund (ERDF/FEDER program), and Groups of Reference: ED431C 2020/21. **Citation Information** @article{garriga2022catalan, title={}, author={}, year={2023}, url={} }