--- license: mit --- --- license: mit --- **Model Description** Model created with OpenNMT-py 3.2 for the Spanish-Aragonese pair using a transformer architecture. The model was converted to the ctranslate2 format. This model was trained for the paper Training and fine-tuning NMT models for low-resource languages using Apertium-based synthetic corpora **How to Translate with this Model** + Install [Python 3.9](https://www.python.org/downloads/release/python-390/) + Install [ctranslate 3.2](https://github.com/OpenNMT/CTranslate2) + Translate an input_text using the NOS-MT-es-arg model with the following command: ```bash perl tokenizer.perl < input.txt > input.tok ``` ```bash subword_nmt.apply_bpe -c ./bpe/es.bpe < input.tok > input.bpe ``` ```bash python3 translate.py ./ct2-arg input.bpe > output.txt ``` ```bash sed -i 's/@@ //g' output.txt ``` ## Citation If you use this model in your research, please cite the following paper: Sant, A., Bardanca Outeiriño, D., Pichel Campos, J. R., De Luca Fornaciari, F., Escolano, C., García Gilabert, J., Gamallo Otero, P., Mash, A., Liao, X., & Melero, M. (2023). Training and fine-tuning NMT models for low-resource languages using Apertium-based synthetic corpora. arXiv.