pryjuli commited on
Commit
77fb986
·
1 Parent(s): 94cab68

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 882.74 +/- 203.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57cd2cda514b066c6f610ed9993fb6036b343e856e39d5be24e7f69da9228fbe
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e8d43f790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e8d43f820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e8d43f8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e8d43f940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2e8d43f9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2e8d43fa60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e8d43faf0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e8d43fb80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2e8d43fc10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e8d43fca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e8d43fd30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e8d43fdc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f2e8d4b7930>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678137374713400127,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPx2uz5rOME/rEq0v7h4F7/59aw/tG4lv7XUOD/KrKC+i1Y+v43pxL3aKxG/kGcgvSOl4T+cpIk8suljPjfVyT+XI8W/EqGfPux3Gj8gBIa9Qu1YP+m4+r5PeOI+YsIgP2vzZb+b2Ak/Fgq4PmwaNj83A/Q/UM0yPiVAAD/Qdcg/bhKcPwbu0j/aGAJAK2PRv8pRPD+pSYC++Lijvu8xor89tsk/wAKqP5Hsvb0TawhAd5ObPwqoN777whM/txZEv2s/or/QwBM+dZj2Pxy/8D5r82W/m9gJPxYKuD5sGjY/K7p9P9wGXj/AWH29V9WvP9xhmT/SeaM/Mn3WP/6dDT3thjU/oR1svJr4qT//S0DA1R+DPgI7L0AbsiTALJTPPpeiNj94sZ0/14MdP5motDzsS9M/vro/PofDFT+yeQE/a/Nlv5vYCT8WCrg+bBo2P6acJz8Q8Mw/OWH1v1sMB74j77A9uP7mv0bk6z6AEaq+AJLQv4pui79Qscq+hpSZP5QCIL0fy5y/DjIPvqpglz/0Uba/zumQv7OkoD5HF4K/ePVvPgWSXz/tu749nwfmv2vzZb/ftu2/Fgq4PiHxs7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABU1Uc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAw1/9PAAAAACU9Pa/AAAAAHldQ70AAAAARYjaPwAAAABKg/k8AAAAALPs2T8AAAAApeWnvQAAAAABC+O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbanXNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK8Ua70AAAAAgR3vvwAAAADZ+089AAAAAPeU+D8AAAAAxE2xPQAAAADUau4/AAAAAFxjsL0AAAAAqMIAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGsqQbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBdG7a8AAAAANoV4L8AAAAA1UCmvQAAAADnPew/AAAAABs0gL0AAAAAHuv+PwAAAACpNrM6AAAAABKW/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdQEI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwgd6vQAAAADaIvq/AAAAALMImD0AAAAAM6HnPwAAAAAiiDu9AAAAAPyM8T8AAAAAOaAFvQAAAADxl+K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQITluw1R+BqMAWyUTegDjAF0lEdArxbp00WM0nV9lChoBkdAl22Y/A0sOGgHTegDaAhHQK8XJvMr3Cd1fZQoaAZHQJc9tVBD5TJoB03oA2gIR0CvGhiLVFx5dX2UKGgGR8AjlZYgaFVUaAdLu2gIR0CvHk2+oLofdX2UKGgGR0CVqXaePJaJaAdN6ANoCEdAryetcv/R3XV9lChoBkdAl+GUTcqOLmgHTegDaAhHQK8oB5rxiG51fZQoaAZHQJgdKf9P1thoB03oA2gIR0CvKDKLCN0edX2UKGgGR0CYIdyj59E1aAdN6ANoCEdAryz9t/FzdXV9lChoBkdAlmt55Rjz7WgHTegDaAhHQK84JQyhzvJ1fZQoaAZHQH7pnSBshxJoB03oA2gIR0CvOLybx3FDdX2UKGgGR0CWSG9aEBbOaAdN6ANoCEdArzj+V7hNunV9lChoBkdAlA4SO/+Kj2gHTegDaAhHQK8/a7lJYkp1fZQoaAZHQJVZNqesgdRoB03oA2gIR0CvSPNTUAktdX2UKGgGR0CZ6J/gR9PUaAdN6ANoCEdAr0lQmqo60nV9lChoBkdAl6WC26TW5GgHTegDaAhHQK9JeyKvV3F1fZQoaAZHQJhQwaJhvzhoB03oA2gIR0CvTiHNgSezdX2UKGgGR0CZAHVghKUWaAdN6ANoCEdAr1rWzQeFL3V9lChoBkdAl7WQWWQfZGgHTegDaAhHQK9bayVObiJ1fZQoaAZHQJK4cam4y45oB03oA2gIR0CvW68Pe54GdX2UKGgGR0CWWabOeJ53aAdN6ANoCEdAr2DIphF3IXV9lChoBkdAlvfPcSGrS2gHTegDaAhHQK9qbZLZi/h1fZQoaAZHQJdCE6T4cm1oB03oA2gIR0CvastkWhysdX2UKGgGR0CVtA1rqMWHaAdN6ANoCEdAr2r53eN1hnV9lChoBkdAmISBV+7UX2gHTegDaAhHQK9vt/wRXfZ1fZQoaAZHQJZRoy6+WW1oB03oA2gIR0CvfPUFbFCLdX2UKGgGR0CMae8jiXIEaAdN6ANoCEdAr31XpSrHVHV9lChoBkdAkmFly/9Hc2gHTegDaAhHQK99h/lQuVZ1fZQoaAZHQJb8yM0gr6NoB03oA2gIR0CvgkGQjlgddX2UKGgGR0CYhS0fYBeYaAdN6ANoCEdAr4uWE/Spi3V9lChoBkdAlymPBWPtD2gHTegDaAhHQK+L+D2alUJ1fZQoaAZHQJF18duHerNoB03oA2gIR0CvjCJqh11XdX2UKGgGR0CGEnl/YrauaAdN6ANoCEdAr5Fr0WdmQXV9lChoBkdAkWF4llbu+mgHTegDaAhHQK+eL4wh4dJ1fZQoaAZHQJAnMmJFb3ZoB03oA2gIR0CvnpDiOvMbdX2UKGgGR0CRz9AOrhitaAdN6ANoCEdAr568jRlYl3V9lChoBkdAhjOoNEw352gHTegDaAhHQK+jffjS5RV1fZQoaAZHQJIdS5Dqnm9oB03oA2gIR0CvrRBhQWN4dX2UKGgGR0Cba7GXokiVaAdN6ANoCEdAr61r5dnkDXV9lChoBkdAh5DYhMajvmgHTegDaAhHQK+tl+Lm6oV1fZQoaAZHQJZnKsU7CBRoB03oA2gIR0CvtBDs+mm+dX2UKGgGR0CU9dfv4M4MaAdN6ANoCEdAr7/m1SflIXV9lChoBkdAlr2cZ5zHTGgHTegDaAhHQK/AQ7wKBup1fZQoaAZHQJd+/bKzRhNoB03oA2gIR0CvwG+vyLAIdX2UKGgGR0CYcgKEWZZ0aAdN6ANoCEdAr8Vf2saKk3V9lChoBkdAlT9E3GXHBGgHTegDaAhHQK/POipNsWR1fZQoaAZHQJlefpLVWjpoB03oA2gIR0Cvz8wKa5PNdX2UKGgGR0CW6UlhPTG6aAdN6ANoCEdAr9AM0P6KtXV9lChoBkdAjYluXVsk6mgHTegDaAhHQK/XEQvpQk51fZQoaAZHQJbqHlr/KhdoB03oA2gIR0Cv4Qf1QIlddX2UKGgGR0CZuwz19ORDaAdN6ANoCEdAr+Fm18b70nV9lChoBkdAlwD+zdDYy2gHTegDaAhHQK/hkYwZflZ1fZQoaAZHQJRYX2ugYgtoB03oA2gIR0Cv5nU5lvqDdX2UKGgGR0CNKtrRBu4xaAdN6ANoCEdAr/GFWyTpxHV9lChoBkdAlxBDTKDCg2gHTegDaAhHQK/yGCAc1fp1fZQoaAZHQHxt3Zf2K2toB03oA2gIR0Cv8lxKQJXydX2UKGgGR0CUfvHi3ocJaAdN6ANoCEdAr/k2tuDSPXV9lChoBkdAmVsfACW/rWgHTegDaAhHQLABXoePq9p1fZQoaAZHQJgSGUNayKNoB03oA2gIR0CwAZHp4bCKdX2UKGgGR0CXccvx6OYIaAdN6ANoCEdAsAGnbBXS0HV9lChoBkdAlwVTArQPZ2gHTegDaAhHQLAEBUSqU/x1fZQoaAZHQJf1In/kvK5oB03oA2gIR0CwCgT4k/r0dX2UKGgGR0CYkdjIq9XcaAdN6ANoCEdAsApLM/yGz3V9lChoBkdAmeGAhfShJ2gHTegDaAhHQLAKavoePq91fZQoaAZHQJg58p2ECeVoB03oA2gIR0CwDRllCkXUdX2UKGgGR0CY1SYukDZEaAdN6ANoCEdAsBHVPJq7AnV9lChoBkdAj3Ty4FzMimgHTegDaAhHQLASBk1/DtR1fZQoaAZHQI1J50ZFXq9oB03oA2gIR0CwEhupfhMrdX2UKGgGR0CW68twaR6oaAdN6ANoCEdAsBRow+MZP3V9lChoBkdAkvt/t2LYPGgHTegDaAhHQLAa+ocrAgx1fZQoaAZHQJNPgJY1YQtoB03oA2gIR0CwGywUlAu7dX2UKGgGR0CS04hE0BOpaAdN6ANoCEdAsBtB1ie/YnV9lChoBkdAjPVlgtvn82gHTegDaAhHQLAdk8D0UXZ1fZQoaAZHQJQxI65oXbdoB03oA2gIR0CwIj/ACW/rdX2UKGgGR0CRqOrv9cbBaAdN6ANoCEdAsCJwFV1fV3V9lChoBkdAlI4Xnlnyu2gHTegDaAhHQLAihNvwVj91fZQoaAZHQJJ7B29tdiVoB03oA2gIR0CwJNxmXgLrdX2UKGgGR0CW/EgH/tIDaAdN6ANoCEdAsCu+YzBRAXV9lChoBkdAjvOLzPKMemgHTegDaAhHQLAsAgXuVop1fZQoaAZHQJIsftZ3cHpoB03oA2gIR0CwLCD9wWFfdX2UKGgGR0CVgja99MK1aAdN6ANoCEdAsC+lM6BAfXV9lChoBkdAi8p3HJcPfGgHTegDaAhHQLA0Tny/bj91fZQoaAZHQJN9jy4FzMloB03oA2gIR0CwNI7WRRuTdX2UKGgGR0CMWqIcinpCaAdN6ANoCEdAsDSumwaBJHV9lChoBkdAlPxG87IT5GgHTegDaAhHQLA4OuXu3MJ1fZQoaAZHQJJzaj59E1FoB03oA2gIR0CwPaGRigCfdX2UKGgGR0CRRs2b5M11aAdN6ANoCEdAsD3SX4TK1XV9lChoBkdAikuvMbFS9GgHTegDaAhHQLA96XyRSxZ1fZQoaAZHQJP9Fj3Ehq1oB03oA2gIR0CwQEif+S8rdX2UKGgGR0CU08vrWy1NaAdN6ANoCEdAsEVl8qnWKHV9lChoBkdAkjTsIE8q4GgHTegDaAhHQLBFqNH6Mzd1fZQoaAZHQJAuJ2GIsRRoB03oA2gIR0CwRcfepGWldX2UKGgGR0CM05rY5DJEaAdN6ANoCEdAsElQa99MK3V9lChoBkdAj017btZ3cGgHTegDaAhHQLBODvHcUM51fZQoaAZHQIN171TR6WxoB03oA2gIR0CwTjuruIAPdX2UKGgGR0CJPZ6VMVUNaAdN6ANoCEdAsE5RN8E3bXV9lChoBkdAiiJCDdxhlWgHTegDaAhHQLBQotyxRl91fZQoaAZHQIhg9Fvybx5oB03oA2gIR0CwVkWll9SddX2UKGgGR0BlcydUbT+eaAdN6ANoCEdAsFaN1HOKO3V9lChoBkdAjgQTwDvE0mgHTegDaAhHQLBWrxEv0yx1fZQoaAZHQIiTDd8Aq/doB03oA2gIR0CwWapQYUFjdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41a729885ff1d9ab6da4ea213873cc1169ef34e04b95fa0cba7cd4e52b2ce4ef
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4be2e16745aabd4c799efe765b280df093c5749e77d6e6ea153284c0a3371666
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e8d43f790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e8d43f820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e8d43f8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e8d43f940>", "_build": "<function ActorCriticPolicy._build at 0x7f2e8d43f9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e8d43fa60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e8d43faf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e8d43fb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e8d43fc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e8d43fca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e8d43fd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e8d43fdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2e8d4b7930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678137374713400127, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPx2uz5rOME/rEq0v7h4F7/59aw/tG4lv7XUOD/KrKC+i1Y+v43pxL3aKxG/kGcgvSOl4T+cpIk8suljPjfVyT+XI8W/EqGfPux3Gj8gBIa9Qu1YP+m4+r5PeOI+YsIgP2vzZb+b2Ak/Fgq4PmwaNj83A/Q/UM0yPiVAAD/Qdcg/bhKcPwbu0j/aGAJAK2PRv8pRPD+pSYC++Lijvu8xor89tsk/wAKqP5Hsvb0TawhAd5ObPwqoN777whM/txZEv2s/or/QwBM+dZj2Pxy/8D5r82W/m9gJPxYKuD5sGjY/K7p9P9wGXj/AWH29V9WvP9xhmT/SeaM/Mn3WP/6dDT3thjU/oR1svJr4qT//S0DA1R+DPgI7L0AbsiTALJTPPpeiNj94sZ0/14MdP5motDzsS9M/vro/PofDFT+yeQE/a/Nlv5vYCT8WCrg+bBo2P6acJz8Q8Mw/OWH1v1sMB74j77A9uP7mv0bk6z6AEaq+AJLQv4pui79Qscq+hpSZP5QCIL0fy5y/DjIPvqpglz/0Uba/zumQv7OkoD5HF4K/ePVvPgWSXz/tu749nwfmv2vzZb/ftu2/Fgq4PiHxs7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABU1Uc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAw1/9PAAAAACU9Pa/AAAAAHldQ70AAAAARYjaPwAAAABKg/k8AAAAALPs2T8AAAAApeWnvQAAAAABC+O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbanXNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK8Ua70AAAAAgR3vvwAAAADZ+089AAAAAPeU+D8AAAAAxE2xPQAAAADUau4/AAAAAFxjsL0AAAAAqMIAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGsqQbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBdG7a8AAAAANoV4L8AAAAA1UCmvQAAAADnPew/AAAAABs0gL0AAAAAHuv+PwAAAACpNrM6AAAAABKW/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADdQEI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwgd6vQAAAADaIvq/AAAAALMImD0AAAAAM6HnPwAAAAAiiDu9AAAAAPyM8T8AAAAAOaAFvQAAAADxl+K/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQITluw1R+BqMAWyUTegDjAF0lEdArxbp00WM0nV9lChoBkdAl22Y/A0sOGgHTegDaAhHQK8XJvMr3Cd1fZQoaAZHQJc9tVBD5TJoB03oA2gIR0CvGhiLVFx5dX2UKGgGR8AjlZYgaFVUaAdLu2gIR0CvHk2+oLofdX2UKGgGR0CVqXaePJaJaAdN6ANoCEdAryetcv/R3XV9lChoBkdAl+GUTcqOLmgHTegDaAhHQK8oB5rxiG51fZQoaAZHQJgdKf9P1thoB03oA2gIR0CvKDKLCN0edX2UKGgGR0CYIdyj59E1aAdN6ANoCEdAryz9t/FzdXV9lChoBkdAlmt55Rjz7WgHTegDaAhHQK84JQyhzvJ1fZQoaAZHQH7pnSBshxJoB03oA2gIR0CvOLybx3FDdX2UKGgGR0CWSG9aEBbOaAdN6ANoCEdArzj+V7hNunV9lChoBkdAlA4SO/+Kj2gHTegDaAhHQK8/a7lJYkp1fZQoaAZHQJVZNqesgdRoB03oA2gIR0CvSPNTUAktdX2UKGgGR0CZ6J/gR9PUaAdN6ANoCEdAr0lQmqo60nV9lChoBkdAl6WC26TW5GgHTegDaAhHQK9JeyKvV3F1fZQoaAZHQJhQwaJhvzhoB03oA2gIR0CvTiHNgSezdX2UKGgGR0CZAHVghKUWaAdN6ANoCEdAr1rWzQeFL3V9lChoBkdAl7WQWWQfZGgHTegDaAhHQK9bayVObiJ1fZQoaAZHQJK4cam4y45oB03oA2gIR0CvW68Pe54GdX2UKGgGR0CWWabOeJ53aAdN6ANoCEdAr2DIphF3IXV9lChoBkdAlvfPcSGrS2gHTegDaAhHQK9qbZLZi/h1fZQoaAZHQJdCE6T4cm1oB03oA2gIR0CvastkWhysdX2UKGgGR0CVtA1rqMWHaAdN6ANoCEdAr2r53eN1hnV9lChoBkdAmISBV+7UX2gHTegDaAhHQK9vt/wRXfZ1fZQoaAZHQJZRoy6+WW1oB03oA2gIR0CvfPUFbFCLdX2UKGgGR0CMae8jiXIEaAdN6ANoCEdAr31XpSrHVHV9lChoBkdAkmFly/9Hc2gHTegDaAhHQK99h/lQuVZ1fZQoaAZHQJb8yM0gr6NoB03oA2gIR0CvgkGQjlgddX2UKGgGR0CYhS0fYBeYaAdN6ANoCEdAr4uWE/Spi3V9lChoBkdAlymPBWPtD2gHTegDaAhHQK+L+D2alUJ1fZQoaAZHQJF18duHerNoB03oA2gIR0CvjCJqh11XdX2UKGgGR0CGEnl/YrauaAdN6ANoCEdAr5Fr0WdmQXV9lChoBkdAkWF4llbu+mgHTegDaAhHQK+eL4wh4dJ1fZQoaAZHQJAnMmJFb3ZoB03oA2gIR0CvnpDiOvMbdX2UKGgGR0CRz9AOrhitaAdN6ANoCEdAr568jRlYl3V9lChoBkdAhjOoNEw352gHTegDaAhHQK+jffjS5RV1fZQoaAZHQJIdS5Dqnm9oB03oA2gIR0CvrRBhQWN4dX2UKGgGR0Cba7GXokiVaAdN6ANoCEdAr61r5dnkDXV9lChoBkdAh5DYhMajvmgHTegDaAhHQK+tl+Lm6oV1fZQoaAZHQJZnKsU7CBRoB03oA2gIR0CvtBDs+mm+dX2UKGgGR0CU9dfv4M4MaAdN6ANoCEdAr7/m1SflIXV9lChoBkdAlr2cZ5zHTGgHTegDaAhHQK/AQ7wKBup1fZQoaAZHQJd+/bKzRhNoB03oA2gIR0CvwG+vyLAIdX2UKGgGR0CYcgKEWZZ0aAdN6ANoCEdAr8Vf2saKk3V9lChoBkdAlT9E3GXHBGgHTegDaAhHQK/POipNsWR1fZQoaAZHQJlefpLVWjpoB03oA2gIR0Cvz8wKa5PNdX2UKGgGR0CW6UlhPTG6aAdN6ANoCEdAr9AM0P6KtXV9lChoBkdAjYluXVsk6mgHTegDaAhHQK/XEQvpQk51fZQoaAZHQJbqHlr/KhdoB03oA2gIR0Cv4Qf1QIlddX2UKGgGR0CZuwz19ORDaAdN6ANoCEdAr+Fm18b70nV9lChoBkdAlwD+zdDYy2gHTegDaAhHQK/hkYwZflZ1fZQoaAZHQJRYX2ugYgtoB03oA2gIR0Cv5nU5lvqDdX2UKGgGR0CNKtrRBu4xaAdN6ANoCEdAr/GFWyTpxHV9lChoBkdAlxBDTKDCg2gHTegDaAhHQK/yGCAc1fp1fZQoaAZHQHxt3Zf2K2toB03oA2gIR0Cv8lxKQJXydX2UKGgGR0CUfvHi3ocJaAdN6ANoCEdAr/k2tuDSPXV9lChoBkdAmVsfACW/rWgHTegDaAhHQLABXoePq9p1fZQoaAZHQJgSGUNayKNoB03oA2gIR0CwAZHp4bCKdX2UKGgGR0CXccvx6OYIaAdN6ANoCEdAsAGnbBXS0HV9lChoBkdAlwVTArQPZ2gHTegDaAhHQLAEBUSqU/x1fZQoaAZHQJf1In/kvK5oB03oA2gIR0CwCgT4k/r0dX2UKGgGR0CYkdjIq9XcaAdN6ANoCEdAsApLM/yGz3V9lChoBkdAmeGAhfShJ2gHTegDaAhHQLAKavoePq91fZQoaAZHQJg58p2ECeVoB03oA2gIR0CwDRllCkXUdX2UKGgGR0CY1SYukDZEaAdN6ANoCEdAsBHVPJq7AnV9lChoBkdAj3Ty4FzMimgHTegDaAhHQLASBk1/DtR1fZQoaAZHQI1J50ZFXq9oB03oA2gIR0CwEhupfhMrdX2UKGgGR0CW68twaR6oaAdN6ANoCEdAsBRow+MZP3V9lChoBkdAkvt/t2LYPGgHTegDaAhHQLAa+ocrAgx1fZQoaAZHQJNPgJY1YQtoB03oA2gIR0CwGywUlAu7dX2UKGgGR0CS04hE0BOpaAdN6ANoCEdAsBtB1ie/YnV9lChoBkdAjPVlgtvn82gHTegDaAhHQLAdk8D0UXZ1fZQoaAZHQJQxI65oXbdoB03oA2gIR0CwIj/ACW/rdX2UKGgGR0CRqOrv9cbBaAdN6ANoCEdAsCJwFV1fV3V9lChoBkdAlI4Xnlnyu2gHTegDaAhHQLAihNvwVj91fZQoaAZHQJJ7B29tdiVoB03oA2gIR0CwJNxmXgLrdX2UKGgGR0CW/EgH/tIDaAdN6ANoCEdAsCu+YzBRAXV9lChoBkdAjvOLzPKMemgHTegDaAhHQLAsAgXuVop1fZQoaAZHQJIsftZ3cHpoB03oA2gIR0CwLCD9wWFfdX2UKGgGR0CVgja99MK1aAdN6ANoCEdAsC+lM6BAfXV9lChoBkdAi8p3HJcPfGgHTegDaAhHQLA0Tny/bj91fZQoaAZHQJN9jy4FzMloB03oA2gIR0CwNI7WRRuTdX2UKGgGR0CMWqIcinpCaAdN6ANoCEdAsDSumwaBJHV9lChoBkdAlPxG87IT5GgHTegDaAhHQLA4OuXu3MJ1fZQoaAZHQJJzaj59E1FoB03oA2gIR0CwPaGRigCfdX2UKGgGR0CRRs2b5M11aAdN6ANoCEdAsD3SX4TK1XV9lChoBkdAikuvMbFS9GgHTegDaAhHQLA96XyRSxZ1fZQoaAZHQJP9Fj3Ehq1oB03oA2gIR0CwQEif+S8rdX2UKGgGR0CU08vrWy1NaAdN6ANoCEdAsEVl8qnWKHV9lChoBkdAkjTsIE8q4GgHTegDaAhHQLBFqNH6Mzd1fZQoaAZHQJAuJ2GIsRRoB03oA2gIR0CwRcfepGWldX2UKGgGR0CM05rY5DJEaAdN6ANoCEdAsElQa99MK3V9lChoBkdAj017btZ3cGgHTegDaAhHQLBODvHcUM51fZQoaAZHQIN171TR6WxoB03oA2gIR0CwTjuruIAPdX2UKGgGR0CJPZ6VMVUNaAdN6ANoCEdAsE5RN8E3bXV9lChoBkdAiiJCDdxhlWgHTegDaAhHQLBQotyxRl91fZQoaAZHQIhg9Fvybx5oB03oA2gIR0CwVkWll9SddX2UKGgGR0BlcydUbT+eaAdN6ANoCEdAsFaN1HOKO3V9lChoBkdAjgQTwDvE0mgHTegDaAhHQLBWrxEv0yx1fZQoaAZHQIiTDd8Aq/doB03oA2gIR0CwWapQYUFjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (977 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 882.7416826820278, "std_reward": 203.35701516177235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T22:27:56.981477"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5e73d1505e381f32484ff0f7ab76230f0a14981cabcd304f405210f19e92a36
3
+ size 2136