File size: 5,849 Bytes
e02a6c9 cb739d2 e02a6c9 2986b3e e02a6c9 0f21bc0 9e10e2e b4dcdd9 975a1bc b4dcdd9 e02a6c9 b4dcdd9 e02a6c9 b4dcdd9 e02a6c9 b4dcdd9 e02a6c9 b4dcdd9 e02a6c9 cb739d2 e02a6c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
license: other
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: NousResearch/Meta-Llama-3-8B
model-index:
- name: llama-3-8B-semeval2014
results: []
language:
- en
metrics:
- f1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: NousResearch/Meta-Llama-3-8B
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: semeval2014_train.jsonl
ds_type: json
type:
# JSONL file contains instruction, input, output fields per line.
# This gets mapped to the equivalent axolotl tags.
field_instruction: instruction
field_input: input
field_output: output
# Format is used by axolotl to generate the prompt.
format: |-
[INST] {input} [/INST]
tokens: # add new control tokens from the dataset to the model
- "[INST]"
- "[/INST]"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
- embed_tokens
- lm_head
wandb_project: absa-semeval2014
wandb_entity: psimm
wandb_log_model:
wandb_name: llama-3-8B-semeval2014
hub_model_id: psimm/llama-3-8B-semeval2014
gradient_accumulation_steps: 1
micro_batch_size: 32
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 0.05
eval_table_size:
eval_table_max_new_tokens: 128
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# llama-3-8B-semeval2014
This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the SemEval2014 Task 4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0695
- F1 Score: 82.13
For more details, see my [article](https://simmering.dev/open-absa)
## Intended uses & limitations
Aspect-based sentiment analysis in English. Pass it review sentences wrapped in tags, like this: [INST]The cheeseburger was tasty but the fries were soggy.[/INST]
## How to run
This adapter requires that two new tokens are added to the tokenizer. The tokens are: "[INST]" and "[/INST]". Also, the base model's embedding layer size has to be increased by 2.
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
extra_tokens = ["[INST]", "[/INST]"]
base_model = "NousResearch/Meta-Llama-3-8B"
base_model = AutoModelForCausalLM.from_pretrained("NousResearch/Meta-Llama-3-8B")
base_model.resize_token_embeddings(base_model.config.vocab_size + len(extra_tokens))
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Meta-Llama-3-8B")
tokenizer.add_special_tokens({"additional_special_tokens": extra_tokens})
model = PeftModel.from_pretrained(base_model, "psimm/llama-3-8B-semeval2014")
input_text = "[INST]The food was tasty[/INST]"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
gen_tokens = model.generate(
input_ids,
max_length=256,
temperature=0.01,
)
# Remove the input tokens
output_tokens = gen_tokens[:, input_ids.shape[1] :]
print(tokenizer.batch_decode(output_tokens, skip_special_tokens=True))
```
## Training and evaluation data
SemEval 2014 Task 4 reviews.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.5408 | 0.0112 | 1 | 2.2742 |
| 0.1159 | 0.2022 | 18 | 0.1026 |
| 0.1028 | 0.4045 | 36 | 0.0762 |
| 0.0813 | 0.6067 | 54 | 0.0709 |
| 0.0908 | 0.8090 | 72 | 0.0665 |
| 0.0431 | 1.0112 | 90 | 0.0639 |
| 0.0275 | 1.2135 | 108 | 0.0663 |
| 0.0224 | 1.4157 | 126 | 0.0659 |
| 0.0349 | 1.6180 | 144 | 0.0637 |
| 0.0281 | 1.8202 | 162 | 0.0589 |
| 0.0125 | 2.0225 | 180 | 0.0592 |
| 0.0088 | 2.2247 | 198 | 0.0682 |
| 0.0076 | 2.4270 | 216 | 0.0666 |
| 0.01 | 2.6292 | 234 | 0.0654 |
| 0.0131 | 2.8315 | 252 | 0.0704 |
| 0.0075 | 3.0337 | 270 | 0.0679 |
| 0.002 | 3.2360 | 288 | 0.0688 |
| 0.0029 | 3.4382 | 306 | 0.0692 |
| 0.0009 | 3.6404 | 324 | 0.0694 |
| 0.0064 | 3.8427 | 342 | 0.0695 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |