File size: 1,868 Bytes
865cdea 14a95ab 865cdea 14a95ab 865cdea def7d4c 7729aa8 503d71b 865cdea 61489ed 865cdea 61489ed 865cdea b86e53f 58b10d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
## RoBERTa Latin model, version 2 --> model card not finished yet
This is a Latin RoBERTa-based LM model, version 2.
The intention of the Transformer-based LM is twofold: on the one hand, it will be used for the evaluation of HTR results; on the other, it should be used as a decoder for the TrOCR architecture.
The training data is more or less the same data as has been used by [Bamman and Burns (2020)](https://arxiv.org/pdf/2009.10053.pdf), although more heavily filtered (see below). There are several digital-born texts from online Latin archives. Other Latin texts have been crawled by [Bamman and Smith](https://www.cs.cmu.edu/~dbamman/latin.html) and thus contain many OCR errors.
The overall downsampled corpus contains 577M of text data.
### Preprocessing
I undertook the following preprocessing steps:
- Normalisation of all lines with [CLTK](http://www.cltk.org) incl. sentence splitting.
- Language identification with [langid](https://github.com/saffsd/langid.py)
- Compute the ratio of Latin vocabulary in each sentence (against the digital-born vocab of the corpus)
- Retain only sentences with a Latin vocabulary ratio of > 85%.
- Exclude all lines containing '^' --> hints at the presence of OCR errors.
The result is a corpus of ~100 million tokens.
The dataset used to train this will be available on Hugging Face later [HERE (does not work yet)]().
### Contact
For contact, reach out to Phillip Ströbel [via mail](mailto:pstroebel@cl.uzh.ch) or [via Twitter](https://twitter.com/CLingophil).
### How to cite
If you use this model, pleas cite it as:
@online{stroebel-roberta-base-latin-cased2,
author = {Ströbel, Phillip Benjamin},
title = {RoBERTa Base Latin Cased V2},
year = 2022,
url = {https://huggingface.co/pstroe/roberta-base-latin-cased2},
urldate = {YYYY-MM-DD}
} |