File size: 6,851 Bytes
1b086c5 da2bc52 cf5ca47 7000b39 cf5ca47 1b086c5 da2bc52 851c3cd da2bc52 851c3cd da2bc52 1b086c5 cf5ca47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
language:
- en
license: llama3
tags:
- axolotl
base_model: meta-llama/Meta-Llama-3-8B
datasets:
- BEE-spoke-data/KI-smorgasbord_fw-small
pipeline_tag: text-generation
model-index:
- name: Llama-3-6.3b-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 10.44
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Llama-3-6.3b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 18.68
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Llama-3-6.3b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.51
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Llama-3-6.3b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.47
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Llama-3-6.3b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.15
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Llama-3-6.3b-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.44
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pszemraj/Llama-3-6.3b-v0.1
name: Open LLM Leaderboard
---
# Llama-3-6.3b-v0.1
This is a layer pruning experiment based off of the original llama-3-8b:
- 8 layers pruned with [PruneMe](https://github.com/pszemraj/PruneMe/tree/upgrades)/MergeKit
- layers selected using [BEE-spoke-data/fineweb-100k_en-med](https://hf.co/datasets/BEE-spoke-data/fineweb-100k_en-med)
- brief subsequent continued pretraining @ ctx 4096
- data: 10k rows of FineWeb (different than pruning data) + some curated data
- wandb [here](https://wandb.ai/pszemraj/llama3-pruning)
## quick eval
hf (pretrained=pszemraj/Llama-3-6.3b-v0.1,trust_remote_code=True,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|--------------|------:|------|-----:|----------|-----:|---|-----:|
|arc_easy | 1|none | 0|acc |0.7109|± |0.0093|
| | |none | 0|acc_norm |0.6843|± |0.0095|
|boolq | 2|none | 0|acc |0.7920|± |0.0071|
|lambada_openai| 1|none | 0|perplexity|4.5411|± |0.1073|
| | |none | 0|acc |0.6734|± |0.0065|
|openbookqa | 1|none | 0|acc |0.3000|± |0.0205|
| | |none | 0|acc_norm |0.4140|± |0.0220|
|piqa | 1|none | 0|acc |0.7443|± |0.0102|
| | |none | 0|acc_norm |0.7530|± |0.0101|
|winogrande | 1|none | 0|acc |0.7127|± |0.0127|
## Details
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: pszemraj/llama-3-prune_8
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
strict: false
seed: 80085
# dataset
datasets:
- path: BEE-spoke-data/KI-smorgasbord_fw-small
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.015
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Llama-3-6.3b-v0.1
hub_model_id: pszemraj/Llama-3-6.3b-v0.1
hub_strategy: every_save
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_fused # paged_adamw_32bit
weight_decay: 0.05
lr_scheduler: cosine
learning_rate: 4e-5
warmup_ratio: 0.1
load_in_8bit: false
load_in_4bit: false
bfloat16: true
tf32: true
flash_attention: true
torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1
output_dir: ./output-axolotl/output-model-6.3b
logging_steps: 8
deepspeed:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0006 | 1 | 7.8100 |
| 2.2782 | 0.2002 | 320 | 2.3728 |
| 2.2699 | 0.4004 | 640 | 2.3265 |
| 2.3761 | 0.6006 | 960 | 2.2849 |
| 2.2448 | 0.8008 | 1280 | 2.2702 |
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pszemraj__Llama-3-6.3b-v0.1)
| Metric |Value|
|-------------------|----:|
|Avg. |10.28|
|IFEval (0-Shot) |10.44|
|BBH (3-Shot) |18.68|
|MATH Lvl 5 (4-Shot)| 1.51|
|GPQA (0-shot) | 4.47|
|MuSR (0-shot) | 6.15|
|MMLU-PRO (5-shot) |20.44|
|