File size: 2,926 Bytes
666a7a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
base_model: pszemraj/MiniLMv2-L6-H384_R-simplewiki
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MiniLMv2-L6-H384_R-simplewiki-fineweb-100k_en-med_512-vN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniLMv2-L6-H384_R-simplewiki-fineweb-100k_en-med_512-vN
This model is a fine-tuned version of [pszemraj/MiniLMv2-L6-H384_R-simplewiki](https://huggingface.co/pszemraj/MiniLMv2-L6-H384_R-simplewiki) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0352
- Accuracy: 0.3774
- Num Input Tokens Seen: 157285376
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1792
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_steps: 100
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|
| 4.6583 | 0.1208 | 150 | 4.5052 | 0.3406 | 9830400 |
| 4.5365 | 0.2415 | 300 | 4.3712 | 0.3525 | 19660800 |
| 4.4621 | 0.3623 | 450 | 4.2810 | 0.3575 | 29491200 |
| 4.4116 | 0.4831 | 600 | 4.2466 | 0.3615 | 39321600 |
| 4.3487 | 0.6038 | 750 | 4.1795 | 0.3661 | 49152000 |
| 4.338 | 0.7246 | 900 | 4.1874 | 0.3663 | 58982400 |
| 4.342 | 0.8454 | 1050 | 4.1475 | 0.3695 | 68812800 |
| 4.268 | 0.9661 | 1200 | 4.1215 | 0.3714 | 78643200 |
| 4.2185 | 1.0869 | 1350 | 4.1032 | 0.3725 | 88472576 |
| 4.2645 | 1.2077 | 1500 | 4.0859 | 0.3757 | 98302976 |
| 4.2542 | 1.3284 | 1650 | 4.0730 | 0.3750 | 108133376 |
| 4.2614 | 1.4492 | 1800 | 4.0682 | 0.3749 | 117963776 |
| 4.1928 | 1.5700 | 1950 | 4.0596 | 0.3758 | 127794176 |
| 4.1971 | 1.6907 | 2100 | 4.0505 | 0.3777 | 137624576 |
| 4.1966 | 1.8115 | 2250 | 4.0163 | 0.3787 | 147454976 |
| 4.16 | 1.9323 | 2400 | 4.0352 | 0.3774 | 157285376 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1
|