pszemraj commited on
Commit
e3f20db
·
1 Parent(s): 41ccceb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md CHANGED
@@ -1,3 +1,63 @@
1
  ---
2
  license: cc-by-sa-3.0
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-sa-3.0
3
+ inference: false
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ pipeline_tag: text2text-generation
8
+ datasets:
9
+ - pszemraj/dolly_hhrlhf-text2text
10
+ tags:
11
+ - instruct
12
  ---
13
+
14
+ # bart-base-instruct: dolly_hhrlhf
15
+
16
+ This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the pszemraj/dolly_hhrlhf-text2text dataset.
17
+
18
+ ## Model description
19
+
20
+ text2text models fine-tuned on a [modified dataset for text2text generation](https://huggingface.co/datasets/pszemraj/dolly_hhrlhf-text2text) based on the relatively more permissive [mosaicml/dolly_hhrlhf](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) dataset.
21
+
22
+ Basic usage in Python:
23
+
24
+ ```python
25
+ # pip install -q transformers accelerate
26
+ from transformers import pipeline, GenerationConfig
27
+
28
+ model_name = "pszemraj/bart-base-instruct-dolly_hhrlhf"
29
+ assistant = pipeline(
30
+ "text2text-generation",
31
+ model_name,
32
+ device_map="auto"
33
+ )
34
+ cfg = GenerationConfig.from_pretrained(model_name)
35
+
36
+ # pass an 'instruction' as the prompt to the pipeline
37
+ prompt = "Write a guide on how to become a ninja while working a 9-5 job."
38
+ result = assistant(prompt, generation_config=cfg)[0]["generated_text"]
39
+ print(result)
40
+ ```
41
+ > using the generation config is optional, can subsitute with other generation params.
42
+
43
+ ## Intended uses & limitations
44
+
45
+ - this is **not** tuned with RLHF etc, and may output offensive results
46
+ - this model is rather small (~600 MB) and therefore it's "cognition" abilities are rather limited.
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 4e-05
54
+ - train_batch_size: 8
55
+ - eval_batch_size: 8
56
+ - seed: 42
57
+ - distributed_type: multi-GPU
58
+ - gradient_accumulation_steps: 8
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: cosine
62
+ - lr_scheduler_warmup_ratio: 0.03
63
+ - num_epochs: 3.0