--- license: apache-2.0 base_model: google/bert_uncased_L-4_H-128_A-2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_uncased_L-4_H-128_A-2-OCR-quality-classification-cls results: [] --- # bert_uncased_L-4_H-128_A-2-OCR-quality-classification-cls This model is a fine-tuned version of [google/bert_uncased_L-4_H-128_A-2](https://huggingface.co/google/bert_uncased_L-4_H-128_A-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0422 - Accuracy: 0.99 - Num Input Tokens Seen: 57341952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:| | 0.1123 | 0.2660 | 250 | 0.1202 | 0.974 | 8192000 | | 0.072 | 0.5321 | 500 | 0.0665 | 0.986 | 16384000 | | 0.0404 | 0.7981 | 750 | 0.0464 | 0.988 | 24576000 | | 0.0255 | 1.0641 | 1000 | 0.0428 | 0.99 | 32765952 | | 0.0253 | 1.3301 | 1250 | 0.0357 | 0.99 | 40957952 | | 0.0329 | 1.5962 | 1500 | 0.0438 | 0.986 | 49149952 | | 0.0435 | 1.8622 | 1750 | 0.0422 | 0.99 | 57341952 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1