|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import torch |
|
import glob |
|
import math |
|
import os |
|
from collections import OrderedDict |
|
|
|
|
|
|
|
import deepspeed |
|
from deepspeed.utils import logger |
|
|
|
debug = 0 |
|
|
|
|
|
device = torch.device('cpu') |
|
|
|
|
|
def get_model_state_file(checkpoint_dir, zero_stage): |
|
if not os.path.isdir(checkpoint_dir): |
|
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") |
|
|
|
|
|
if zero_stage == 2: |
|
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") |
|
elif zero_stage == 3: |
|
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") |
|
|
|
if not os.path.exists(file): |
|
raise FileNotFoundError(f"can't find model states file at '{file}'") |
|
|
|
return file |
|
|
|
|
|
def get_optim_files(checkpoint_dir): |
|
|
|
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir, "*_optim_states.pt"))) |
|
|
|
if len(optim_files) == 0: |
|
raise FileNotFoundError( |
|
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'") |
|
|
|
return optim_files |
|
|
|
|
|
def parse_model_state(file): |
|
state_dict = torch.load(file, map_location=device) |
|
|
|
if "buffer_names" not in state_dict: |
|
raise ValueError(f"{file} is not a model state checkpoint") |
|
buffer_names = state_dict["buffer_names"] |
|
if debug: |
|
print("Found buffers:", buffer_names) |
|
|
|
|
|
buffers = { |
|
k: v.float() |
|
for k, |
|
v in state_dict["module"].items() if k in buffer_names |
|
} |
|
return buffers |
|
|
|
|
|
def parse_optim_states(files, ds_checkpoint_dir): |
|
|
|
total_files = len(files) |
|
state_dicts = [] |
|
for f in files: |
|
state_dicts.append(torch.load(f, map_location=device)) |
|
|
|
if not "zero_stage" in state_dicts[0]['optimizer_state_dict']: |
|
raise ValueError(f"{files[0]} is not a zero checkpoint") |
|
zero_stage = state_dicts[0]['optimizer_state_dict']["zero_stage"] |
|
world_size = state_dicts[0]['optimizer_state_dict']["partition_count"] |
|
param_shapes = state_dicts[0]["param_shapes"] |
|
|
|
|
|
|
|
|
|
if type(world_size) is list: |
|
world_size = max(world_size) |
|
|
|
if world_size != total_files: |
|
raise ValueError( |
|
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " |
|
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." |
|
) |
|
|
|
|
|
if zero_stage == 2: |
|
fp32_groups_key = "single_partition_of_fp32_groups" |
|
elif zero_stage == 3: |
|
fp32_groups_key = "fp32_flat_groups" |
|
else: |
|
raise ValueError(f"unknown zero stage {zero_stage}") |
|
|
|
if zero_stage == 2: |
|
fp32_flat_groups = [ |
|
state_dicts[i]['optimizer_state_dict'][fp32_groups_key] |
|
for i in range(len(state_dicts)) |
|
] |
|
elif zero_stage == 3: |
|
|
|
|
|
|
|
|
|
|
|
|
|
fp32_flat_groups = [ |
|
torch.cat(state_dicts[i]['optimizer_state_dict'][fp32_groups_key], |
|
0) for i in range(len(state_dicts)) |
|
] |
|
|
|
return zero_stage, world_size, param_shapes, fp32_flat_groups |
|
|
|
|
|
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): |
|
""" |
|
Returns fp32 state_dict reconstructed from ds checkpoint |
|
|
|
Args: |
|
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) |
|
|
|
""" |
|
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") |
|
|
|
optim_files = get_optim_files(ds_checkpoint_dir) |
|
zero_stage, world_size, param_shapes, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) |
|
print( |
|
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") |
|
|
|
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage) |
|
buffers = parse_model_state(model_file) |
|
|
|
if zero_stage == 2: |
|
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, |
|
param_shapes, |
|
fp32_flat_groups, |
|
buffers) |
|
elif zero_stage == 3: |
|
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, |
|
param_shapes, |
|
fp32_flat_groups, |
|
buffers) |
|
|
|
|
|
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, |
|
param_shapes, |
|
fp32_flat_groups, |
|
buffers): |
|
|
|
|
|
|
|
|
|
|
|
if debug: |
|
for i in range(world_size): |
|
for j in range(len(fp32_flat_groups[0])): |
|
print(f"fp32_flat_groups[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") |
|
|
|
|
|
num_param_groups = len(fp32_flat_groups[0]) |
|
merged_single_partition_of_fp32_groups = [] |
|
for i in range(num_param_groups): |
|
merged_partitions = [sd[i] for sd in fp32_flat_groups] |
|
full_single_fp32_vector = torch.cat(merged_partitions, 0) |
|
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) |
|
avail_numel = sum([ |
|
full_single_fp32_vector.numel() |
|
for full_single_fp32_vector in merged_single_partition_of_fp32_groups |
|
]) |
|
|
|
if debug: |
|
wanted_params = sum([len(shapes) for shapes in param_shapes]) |
|
wanted_numel = sum( |
|
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) |
|
|
|
print(f"Have {avail_numel} numels to process.") |
|
print(f"Need {wanted_numel} numels in {wanted_params} params.") |
|
|
|
state_dict = OrderedDict() |
|
|
|
|
|
state_dict.update(buffers) |
|
if debug: |
|
print(f"added {len(buffers)} buffers") |
|
|
|
|
|
|
|
|
|
total_numel = 0 |
|
total_params = 0 |
|
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): |
|
offset = 0 |
|
avail_numel = full_single_fp32_vector.numel() |
|
for name, shape in shapes.items(): |
|
|
|
unpartitioned_numel = shape.numel() |
|
total_numel += unpartitioned_numel |
|
total_params += 1 |
|
|
|
if debug: |
|
print( |
|
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} " |
|
) |
|
state_dict[name] = full_single_fp32_vector.narrow( |
|
0, |
|
offset, |
|
unpartitioned_numel).view(shape) |
|
offset += unpartitioned_numel |
|
|
|
|
|
|
|
|
|
|
|
align_to = 2 * world_size |
|
|
|
def zero2_align(x): |
|
return align_to * math.ceil(x / align_to) |
|
|
|
if debug: |
|
print(f"original offset={offset}, avail_numel={avail_numel}") |
|
|
|
offset = zero2_align(offset) |
|
avail_numel = zero2_align(avail_numel) |
|
|
|
if debug: |
|
print(f"aligned offset={offset}, avail_numel={avail_numel}") |
|
|
|
|
|
if offset != avail_numel: |
|
raise ValueError( |
|
f"consumed {offset} numels out of {avail_numel} - something is wrong") |
|
|
|
print( |
|
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements" |
|
) |
|
|
|
return state_dict |
|
|
|
|
|
def zero3_partitioned_param_info(unpartitioned_numel, world_size): |
|
remainder = unpartitioned_numel % world_size |
|
padding_numel = (world_size - remainder) if remainder else 0 |
|
partitioned_numel = math.ceil(unpartitioned_numel / world_size) |
|
return partitioned_numel, padding_numel |
|
|
|
|
|
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, |
|
param_shapes, |
|
fp32_flat_groups, |
|
buffers): |
|
|
|
|
|
|
|
|
|
avail_numel = fp32_flat_groups[0].numel() * world_size |
|
|
|
param_shapes = {k: v for d in param_shapes for k, v in d.items()} |
|
|
|
if debug: |
|
for i in range(world_size): |
|
print(f"fp32_flat_groups[{i}].shape={fp32_flat_groups[i].shape}") |
|
|
|
wanted_params = len(param_shapes) |
|
wanted_numel = sum(shape.numel() for shape in param_shapes.values()) |
|
|
|
print(f"Have {avail_numel} numels to process.") |
|
print(f"Need {wanted_numel} numels in {wanted_params} params.") |
|
|
|
state_dict = OrderedDict() |
|
|
|
|
|
state_dict.update(buffers) |
|
if debug: |
|
print(f"added {len(buffers)} buffers") |
|
|
|
|
|
|
|
|
|
offset = 0 |
|
total_numel = 0 |
|
total_params = 0 |
|
for name, shape in param_shapes.items(): |
|
|
|
unpartitioned_numel = shape.numel() |
|
total_numel += unpartitioned_numel |
|
total_params += 1 |
|
|
|
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) |
|
|
|
if debug: |
|
print( |
|
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" |
|
) |
|
|
|
|
|
state_dict[name] = torch.cat( |
|
tuple(fp32_flat_groups[i].narrow(0, |
|
offset, |
|
partitioned_numel) |
|
for i in range(world_size)), |
|
0).narrow(0, |
|
0, |
|
unpartitioned_numel).view(shape) |
|
offset += partitioned_numel |
|
|
|
offset *= world_size |
|
|
|
|
|
if offset != avail_numel: |
|
raise ValueError( |
|
f"consumed {offset} numels out of {avail_numel} - something is wrong") |
|
|
|
print( |
|
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements" |
|
) |
|
|
|
return state_dict |
|
|
|
|
|
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): |
|
""" |
|
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with |
|
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example |
|
via a model hub. |
|
|
|
Args: |
|
- ``checkpoint_dir``: path to the desired checkpoint folder |
|
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` |
|
|
|
Returns: |
|
- pytorch ``state_dict`` |
|
|
|
Note: this approach may not work if your application doesn't have sufficient free CPU memory and |
|
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with |
|
the checkpoint. |
|
|
|
A typical usage might be :: |
|
|
|
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint |
|
# do the training and checkpoint saving |
|
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu |
|
model = model.cpu() # move to cpu |
|
model.load_state_dict(state_dict) |
|
# submit to model hub or save the model to share with others |
|
|
|
In this example the ``model`` will no longer be usable in the deepspeed context of the same |
|
application. i.e. you will need to re-initialize the deepspeed engine, since |
|
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. |
|
|
|
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. |
|
|
|
""" |
|
if tag is None: |
|
latest_path = os.path.join(checkpoint_dir, 'latest') |
|
if os.path.isfile(latest_path): |
|
with open(latest_path, 'r') as fd: |
|
tag = fd.read().strip() |
|
else: |
|
raise ValueError(f"Unable to find 'latest' file at {latest_path}") |
|
|
|
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) |
|
|
|
if not os.path.isdir(ds_checkpoint_dir): |
|
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") |
|
|
|
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) |
|
|
|
|
|
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): |
|
""" |
|
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be |
|
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. |
|
|
|
Args: |
|
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) |
|
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) |
|
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` |
|
""" |
|
|
|
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) |
|
print(f"Saving fp32 state dict to {output_file}") |
|
torch.save(state_dict, output_file) |
|
|
|
|
|
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): |
|
""" |
|
1. Put the provided model to cpu |
|
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` |
|
3. Load it into the provided model |
|
|
|
Args: |
|
- ``model``: the model object to update |
|
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) |
|
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` |
|
|
|
Returns: |
|
- ``model`: modified model |
|
|
|
Make sure you have plenty of CPU memory available before you call this function. If you don't |
|
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it |
|
conveniently placed for you in the checkpoint folder. |
|
|
|
A typical usage might be :: |
|
|
|
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint |
|
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) |
|
# submit to model hub or save the model to share with others |
|
|
|
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context |
|
of the same application. i.e. you will need to re-initialize the deepspeed engine, since |
|
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. |
|
|
|
""" |
|
logger.info(f"Extracting fp32 weights") |
|
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) |
|
|
|
logger.info(f"Overwriting model with fp32 weights") |
|
model = model.cpu() |
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
return model |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"checkpoint_dir", |
|
type=str, |
|
help="path to the desired checkpoint folder, e.g., path/checkpoint-12") |
|
parser.add_argument( |
|
"output_file", |
|
type=str, |
|
help= |
|
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)" |
|
) |
|
parser.add_argument("-d", "--debug", action='store_true', help="enable debug") |
|
args = parser.parse_args() |
|
|
|
debug = args.debug |
|
|
|
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file) |
|
|