|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- matthews_correlation |
|
model-index: |
|
- name: deberta-v3-xsmall-CoLA |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE COLA |
|
type: glue |
|
config: cola |
|
split: validation |
|
args: cola |
|
metrics: |
|
- name: Matthews Correlation |
|
type: matthews_correlation |
|
value: 0.5894856058137782 |
|
|
|
widget: |
|
- text: 'The cat sat on the mat.' |
|
example_title: Correct grammatical sentence |
|
- text: 'Me and my friend going to the store.' |
|
example_title: Incorrect subject-verb agreement |
|
- text: 'I ain''t got no money.' |
|
example_title: Incorrect verb conjugation and double negative |
|
- text: 'She don''t like pizza no more.' |
|
example_title: Incorrect verb conjugation and double negative |
|
- text: 'They is arriving tomorrow.' |
|
example_title: Incorrect verb conjugation |
|
--- |
|
|
|
|
|
# deberta-v3-xsmall-CoLA |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the GLUE COLA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4237 |
|
- Matthews Correlation: 0.5895 |
|
|
|
## Model description |
|
|
|
Trying to find a decent optimum between accuracy/quality and inference speed. |
|
|
|
|
|
```json |
|
{ |
|
"epoch": 3.0, |
|
"eval_loss": 0.423, |
|
"eval_matthews_correlation": 0.589, |
|
"eval_runtime": 5.0422, |
|
"eval_samples": 1043, |
|
"eval_samples_per_second": 206.853, |
|
"eval_steps_per_second": 51.763 |
|
} |
|
|
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 4 |
|
- seed: 16105 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------:| |
|
| 0.3945 | 1.0 | 67 | 0.4323 | 0.5778 | |
|
| 0.3214 | 2.0 | 134 | 0.4237 | 0.5895 | |
|
| 0.3059 | 3.0 | 201 | 0.4636 | 0.5795 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.1 |
|
|