File size: 2,292 Bytes
530bb8f 18e10e6 530bb8f 18e10e6 530bb8f 18e10e6 530bb8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: facebook/dinov2-small
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dinov2-small-types-of-film-shots-vN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dinov2-small-types-of-film-shots-vN
This model is a fine-tuned version of [facebook/dinov2-small](https://huggingface.co/facebook/dinov2-small) on the szymonrucinski/types-of-film-shots dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9864
- Accuracy: 0.6259
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17480
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 12.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6177 | 0.97 | 24 | 1.5501 | 0.4101 |
| 1.3029 | 1.99 | 49 | 1.2448 | 0.5108 |
| 1.1785 | 2.96 | 73 | 1.0556 | 0.5252 |
| 1.2146 | 3.98 | 98 | 1.2316 | 0.5396 |
| 0.8389 | 4.99 | 123 | 1.0235 | 0.5971 |
| 0.7883 | 5.97 | 147 | 0.9960 | 0.6259 |
| 0.7899 | 6.98 | 172 | 1.1354 | 0.5540 |
| 0.663 | 8.0 | 197 | 1.0971 | 0.5827 |
| 0.6013 | 8.97 | 221 | 0.9864 | 0.6259 |
| 0.6276 | 9.99 | 246 | 1.0182 | 0.6115 |
| 0.5196 | 10.96 | 270 | 1.0074 | 0.6547 |
| 0.4761 | 11.7 | 288 | 0.9956 | 0.6763 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|