pszemraj commited on
Commit
12115ff
·
1 Parent(s): dbf27d0

update model with additional 1.8ish epochs training

Browse files
Files changed (8) hide show
  1. .gitattributes +0 -1
  2. config.json +1 -1
  3. latest +1 -1
  4. pytorch_model.bin +1 -1
  5. tokenizer.json +6 -3
  6. trainer_state.json +2164 -0
  7. training_args.bin +2 -2
  8. zero_to_fp32.py +17 -1
.gitattributes CHANGED
@@ -1,7 +1,6 @@
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
  *.ftz filter=lfs diff=lfs merge=lfs -text
6
  *.gz filter=lfs diff=lfs merge=lfs -text
config.json CHANGED
@@ -75,7 +75,7 @@
75
  },
76
  "tokenizer_class": "GPT2Tokenizer",
77
  "torch_dtype": "bfloat16",
78
- "transformers_version": "4.17.0",
79
  "use_cache": false,
80
  "vocab_size": 50257,
81
  "window_size": 256
 
75
  },
76
  "tokenizer_class": "GPT2Tokenizer",
77
  "torch_dtype": "bfloat16",
78
+ "transformers_version": "4.18.0",
79
  "use_cache": false,
80
  "vocab_size": 50257,
81
  "window_size": 256
latest CHANGED
@@ -1 +1 @@
1
- global_step861
 
1
+ global_step1794
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e6b513945c01dd13fa0f7cbc4c202c9989766e350818030341147d26521c2d24
3
  size 11142172078
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3ed96d4f16a77132786cd79f6f7a262d707e6b1be5c57f6facc06fd852fcb0f
3
  size 11142172078
tokenizer.json CHANGED
@@ -17,17 +17,20 @@
17
  "pre_tokenizer": {
18
  "type": "ByteLevel",
19
  "add_prefix_space": false,
20
- "trim_offsets": true
 
21
  },
22
  "post_processor": {
23
  "type": "ByteLevel",
24
  "add_prefix_space": true,
25
- "trim_offsets": false
 
26
  },
27
  "decoder": {
28
  "type": "ByteLevel",
29
  "add_prefix_space": true,
30
- "trim_offsets": true
 
31
  },
32
  "model": {
33
  "type": "BPE",
 
17
  "pre_tokenizer": {
18
  "type": "ByteLevel",
19
  "add_prefix_space": false,
20
+ "trim_offsets": true,
21
+ "use_regex": true
22
  },
23
  "post_processor": {
24
  "type": "ByteLevel",
25
  "add_prefix_space": true,
26
+ "trim_offsets": false,
27
+ "use_regex": true
28
  },
29
  "decoder": {
30
  "type": "ByteLevel",
31
  "add_prefix_space": true,
32
+ "trim_offsets": true,
33
+ "use_regex": true
34
  },
35
  "model": {
36
  "type": "BPE",
trainer_state.json ADDED
@@ -0,0 +1,2164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.4515819023292278,
5
+ "global_step": 1793,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 8.228161798644422e-06,
13
+ "loss": 3.1603,
14
+ "step": 5
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 1.1771838201355582e-05,
19
+ "loss": 2.7601,
20
+ "step": 10
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 1.384475601163205e-05,
25
+ "loss": 2.6729,
26
+ "step": 15
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 1.5315514604066738e-05,
31
+ "loss": 2.3958,
32
+ "step": 20
33
+ },
34
+ {
35
+ "epoch": 0.02,
36
+ "learning_rate": 1.6456323597288844e-05,
37
+ "loss": 2.3595,
38
+ "step": 25
39
+ },
40
+ {
41
+ "epoch": 0.02,
42
+ "learning_rate": 1.738843241434321e-05,
43
+ "loss": 2.4,
44
+ "step": 30
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "learning_rate": 1.817651918997498e-05,
49
+ "loss": 2.2831,
50
+ "step": 35
51
+ },
52
+ {
53
+ "epoch": 0.03,
54
+ "learning_rate": 1.8859191006777896e-05,
55
+ "loss": 2.2999,
56
+ "step": 40
57
+ },
58
+ {
59
+ "epoch": 0.04,
60
+ "learning_rate": 1.946135022461968e-05,
61
+ "loss": 2.1469,
62
+ "step": 45
63
+ },
64
+ {
65
+ "epoch": 0.04,
66
+ "learning_rate": 2e-05,
67
+ "loss": 2.2508,
68
+ "step": 50
69
+ },
70
+ {
71
+ "epoch": 0.04,
72
+ "learning_rate": 2e-05,
73
+ "loss": 2.285,
74
+ "step": 55
75
+ },
76
+ {
77
+ "epoch": 0.05,
78
+ "learning_rate": 2e-05,
79
+ "loss": 2.2009,
80
+ "step": 60
81
+ },
82
+ {
83
+ "epoch": 0.05,
84
+ "learning_rate": 2e-05,
85
+ "loss": 2.1514,
86
+ "step": 65
87
+ },
88
+ {
89
+ "epoch": 0.06,
90
+ "learning_rate": 2e-05,
91
+ "loss": 2.137,
92
+ "step": 70
93
+ },
94
+ {
95
+ "epoch": 0.06,
96
+ "learning_rate": 2e-05,
97
+ "loss": 2.2193,
98
+ "step": 75
99
+ },
100
+ {
101
+ "epoch": 0.06,
102
+ "learning_rate": 2e-05,
103
+ "loss": 2.2193,
104
+ "step": 80
105
+ },
106
+ {
107
+ "epoch": 0.07,
108
+ "learning_rate": 2e-05,
109
+ "loss": 2.1647,
110
+ "step": 85
111
+ },
112
+ {
113
+ "epoch": 0.07,
114
+ "learning_rate": 2e-05,
115
+ "loss": 2.2805,
116
+ "step": 90
117
+ },
118
+ {
119
+ "epoch": 0.08,
120
+ "learning_rate": 2e-05,
121
+ "loss": 2.1456,
122
+ "step": 95
123
+ },
124
+ {
125
+ "epoch": 0.08,
126
+ "learning_rate": 2e-05,
127
+ "loss": 2.1043,
128
+ "step": 100
129
+ },
130
+ {
131
+ "epoch": 0.08,
132
+ "learning_rate": 2e-05,
133
+ "loss": 2.1215,
134
+ "step": 105
135
+ },
136
+ {
137
+ "epoch": 0.09,
138
+ "learning_rate": 2e-05,
139
+ "loss": 2.1528,
140
+ "step": 110
141
+ },
142
+ {
143
+ "epoch": 0.09,
144
+ "learning_rate": 2e-05,
145
+ "loss": 2.134,
146
+ "step": 115
147
+ },
148
+ {
149
+ "epoch": 0.1,
150
+ "learning_rate": 2e-05,
151
+ "loss": 2.0645,
152
+ "step": 120
153
+ },
154
+ {
155
+ "epoch": 0.1,
156
+ "learning_rate": 2e-05,
157
+ "loss": 2.1347,
158
+ "step": 125
159
+ },
160
+ {
161
+ "epoch": 0.11,
162
+ "learning_rate": 2e-05,
163
+ "loss": 2.1372,
164
+ "step": 130
165
+ },
166
+ {
167
+ "epoch": 0.11,
168
+ "learning_rate": 2e-05,
169
+ "loss": 2.0921,
170
+ "step": 135
171
+ },
172
+ {
173
+ "epoch": 0.11,
174
+ "learning_rate": 2e-05,
175
+ "loss": 2.1157,
176
+ "step": 140
177
+ },
178
+ {
179
+ "epoch": 0.12,
180
+ "learning_rate": 2e-05,
181
+ "loss": 2.0916,
182
+ "step": 145
183
+ },
184
+ {
185
+ "epoch": 0.12,
186
+ "learning_rate": 2e-05,
187
+ "loss": 2.0519,
188
+ "step": 150
189
+ },
190
+ {
191
+ "epoch": 0.13,
192
+ "learning_rate": 2e-05,
193
+ "loss": 2.0987,
194
+ "step": 155
195
+ },
196
+ {
197
+ "epoch": 0.13,
198
+ "learning_rate": 2e-05,
199
+ "loss": 1.9597,
200
+ "step": 160
201
+ },
202
+ {
203
+ "epoch": 0.13,
204
+ "learning_rate": 2e-05,
205
+ "loss": 2.1301,
206
+ "step": 165
207
+ },
208
+ {
209
+ "epoch": 0.14,
210
+ "learning_rate": 2e-05,
211
+ "loss": 2.1803,
212
+ "step": 170
213
+ },
214
+ {
215
+ "epoch": 0.14,
216
+ "learning_rate": 2e-05,
217
+ "loss": 2.1488,
218
+ "step": 175
219
+ },
220
+ {
221
+ "epoch": 0.15,
222
+ "learning_rate": 2e-05,
223
+ "loss": 2.0421,
224
+ "step": 180
225
+ },
226
+ {
227
+ "epoch": 0.15,
228
+ "learning_rate": 2e-05,
229
+ "loss": 2.2094,
230
+ "step": 185
231
+ },
232
+ {
233
+ "epoch": 0.15,
234
+ "learning_rate": 2e-05,
235
+ "loss": 2.1173,
236
+ "step": 190
237
+ },
238
+ {
239
+ "epoch": 0.16,
240
+ "learning_rate": 2e-05,
241
+ "loss": 2.0779,
242
+ "step": 195
243
+ },
244
+ {
245
+ "epoch": 0.16,
246
+ "learning_rate": 2e-05,
247
+ "loss": 2.1213,
248
+ "step": 200
249
+ },
250
+ {
251
+ "epoch": 0.17,
252
+ "learning_rate": 2e-05,
253
+ "loss": 2.1425,
254
+ "step": 205
255
+ },
256
+ {
257
+ "epoch": 0.17,
258
+ "learning_rate": 2e-05,
259
+ "loss": 2.0807,
260
+ "step": 210
261
+ },
262
+ {
263
+ "epoch": 0.17,
264
+ "learning_rate": 2e-05,
265
+ "loss": 2.1772,
266
+ "step": 215
267
+ },
268
+ {
269
+ "epoch": 0.18,
270
+ "learning_rate": 2e-05,
271
+ "loss": 2.0721,
272
+ "step": 220
273
+ },
274
+ {
275
+ "epoch": 0.18,
276
+ "learning_rate": 2e-05,
277
+ "loss": 2.1006,
278
+ "step": 225
279
+ },
280
+ {
281
+ "epoch": 0.19,
282
+ "learning_rate": 2e-05,
283
+ "loss": 2.1579,
284
+ "step": 230
285
+ },
286
+ {
287
+ "epoch": 0.19,
288
+ "learning_rate": 2e-05,
289
+ "loss": 1.9796,
290
+ "step": 235
291
+ },
292
+ {
293
+ "epoch": 0.19,
294
+ "learning_rate": 2e-05,
295
+ "loss": 2.0889,
296
+ "step": 240
297
+ },
298
+ {
299
+ "epoch": 0.2,
300
+ "learning_rate": 2e-05,
301
+ "loss": 1.977,
302
+ "step": 245
303
+ },
304
+ {
305
+ "epoch": 0.2,
306
+ "learning_rate": 2e-05,
307
+ "loss": 2.1304,
308
+ "step": 250
309
+ },
310
+ {
311
+ "epoch": 0.21,
312
+ "learning_rate": 2e-05,
313
+ "loss": 2.1525,
314
+ "step": 255
315
+ },
316
+ {
317
+ "epoch": 0.21,
318
+ "learning_rate": 2e-05,
319
+ "loss": 2.0773,
320
+ "step": 260
321
+ },
322
+ {
323
+ "epoch": 0.21,
324
+ "learning_rate": 2e-05,
325
+ "loss": 2.145,
326
+ "step": 265
327
+ },
328
+ {
329
+ "epoch": 0.22,
330
+ "learning_rate": 2e-05,
331
+ "loss": 2.0542,
332
+ "step": 270
333
+ },
334
+ {
335
+ "epoch": 0.22,
336
+ "learning_rate": 2e-05,
337
+ "loss": 2.0588,
338
+ "step": 275
339
+ },
340
+ {
341
+ "epoch": 0.23,
342
+ "learning_rate": 2e-05,
343
+ "loss": 2.2034,
344
+ "step": 280
345
+ },
346
+ {
347
+ "epoch": 0.23,
348
+ "learning_rate": 2e-05,
349
+ "loss": 2.0698,
350
+ "step": 285
351
+ },
352
+ {
353
+ "epoch": 0.23,
354
+ "learning_rate": 2e-05,
355
+ "loss": 2.0572,
356
+ "step": 290
357
+ },
358
+ {
359
+ "epoch": 0.24,
360
+ "learning_rate": 2e-05,
361
+ "loss": 2.1129,
362
+ "step": 295
363
+ },
364
+ {
365
+ "epoch": 0.24,
366
+ "learning_rate": 2e-05,
367
+ "loss": 2.1429,
368
+ "step": 300
369
+ },
370
+ {
371
+ "epoch": 0.25,
372
+ "learning_rate": 2e-05,
373
+ "loss": 2.0936,
374
+ "step": 305
375
+ },
376
+ {
377
+ "epoch": 0.25,
378
+ "learning_rate": 2e-05,
379
+ "loss": 1.9964,
380
+ "step": 310
381
+ },
382
+ {
383
+ "epoch": 0.25,
384
+ "learning_rate": 2e-05,
385
+ "loss": 2.1298,
386
+ "step": 315
387
+ },
388
+ {
389
+ "epoch": 0.26,
390
+ "learning_rate": 2e-05,
391
+ "loss": 2.0689,
392
+ "step": 320
393
+ },
394
+ {
395
+ "epoch": 0.26,
396
+ "learning_rate": 2e-05,
397
+ "loss": 2.0804,
398
+ "step": 325
399
+ },
400
+ {
401
+ "epoch": 0.27,
402
+ "learning_rate": 2e-05,
403
+ "loss": 2.0465,
404
+ "step": 330
405
+ },
406
+ {
407
+ "epoch": 0.27,
408
+ "learning_rate": 2e-05,
409
+ "loss": 2.0871,
410
+ "step": 335
411
+ },
412
+ {
413
+ "epoch": 0.28,
414
+ "learning_rate": 2e-05,
415
+ "loss": 2.099,
416
+ "step": 340
417
+ },
418
+ {
419
+ "epoch": 0.28,
420
+ "learning_rate": 2e-05,
421
+ "loss": 2.0433,
422
+ "step": 345
423
+ },
424
+ {
425
+ "epoch": 0.28,
426
+ "learning_rate": 2e-05,
427
+ "loss": 2.0825,
428
+ "step": 350
429
+ },
430
+ {
431
+ "epoch": 0.29,
432
+ "learning_rate": 2e-05,
433
+ "loss": 2.0902,
434
+ "step": 355
435
+ },
436
+ {
437
+ "epoch": 0.29,
438
+ "learning_rate": 2e-05,
439
+ "loss": 2.063,
440
+ "step": 360
441
+ },
442
+ {
443
+ "epoch": 0.3,
444
+ "learning_rate": 2e-05,
445
+ "loss": 2.1341,
446
+ "step": 365
447
+ },
448
+ {
449
+ "epoch": 0.3,
450
+ "learning_rate": 2e-05,
451
+ "loss": 2.0562,
452
+ "step": 370
453
+ },
454
+ {
455
+ "epoch": 0.3,
456
+ "learning_rate": 2e-05,
457
+ "loss": 2.0492,
458
+ "step": 375
459
+ },
460
+ {
461
+ "epoch": 0.31,
462
+ "learning_rate": 2e-05,
463
+ "loss": 1.9866,
464
+ "step": 380
465
+ },
466
+ {
467
+ "epoch": 0.31,
468
+ "learning_rate": 2e-05,
469
+ "loss": 2.1307,
470
+ "step": 385
471
+ },
472
+ {
473
+ "epoch": 0.32,
474
+ "learning_rate": 2e-05,
475
+ "loss": 2.1265,
476
+ "step": 390
477
+ },
478
+ {
479
+ "epoch": 0.32,
480
+ "learning_rate": 2e-05,
481
+ "loss": 2.0729,
482
+ "step": 395
483
+ },
484
+ {
485
+ "epoch": 0.32,
486
+ "learning_rate": 2e-05,
487
+ "loss": 2.0072,
488
+ "step": 400
489
+ },
490
+ {
491
+ "epoch": 0.33,
492
+ "learning_rate": 2e-05,
493
+ "loss": 2.1163,
494
+ "step": 405
495
+ },
496
+ {
497
+ "epoch": 0.33,
498
+ "learning_rate": 2e-05,
499
+ "loss": 2.1249,
500
+ "step": 410
501
+ },
502
+ {
503
+ "epoch": 0.34,
504
+ "learning_rate": 2e-05,
505
+ "loss": 2.0166,
506
+ "step": 415
507
+ },
508
+ {
509
+ "epoch": 0.34,
510
+ "learning_rate": 2e-05,
511
+ "loss": 2.0386,
512
+ "step": 420
513
+ },
514
+ {
515
+ "epoch": 0.34,
516
+ "learning_rate": 2e-05,
517
+ "loss": 2.0629,
518
+ "step": 425
519
+ },
520
+ {
521
+ "epoch": 0.35,
522
+ "learning_rate": 2e-05,
523
+ "loss": 2.0647,
524
+ "step": 430
525
+ },
526
+ {
527
+ "epoch": 0.35,
528
+ "learning_rate": 2e-05,
529
+ "loss": 2.1011,
530
+ "step": 435
531
+ },
532
+ {
533
+ "epoch": 0.36,
534
+ "learning_rate": 2e-05,
535
+ "loss": 1.9827,
536
+ "step": 440
537
+ },
538
+ {
539
+ "epoch": 0.36,
540
+ "learning_rate": 2e-05,
541
+ "loss": 2.1154,
542
+ "step": 445
543
+ },
544
+ {
545
+ "epoch": 0.36,
546
+ "learning_rate": 2e-05,
547
+ "loss": 2.0073,
548
+ "step": 450
549
+ },
550
+ {
551
+ "epoch": 0.37,
552
+ "learning_rate": 2e-05,
553
+ "loss": 2.11,
554
+ "step": 455
555
+ },
556
+ {
557
+ "epoch": 0.37,
558
+ "learning_rate": 2e-05,
559
+ "loss": 2.0181,
560
+ "step": 460
561
+ },
562
+ {
563
+ "epoch": 0.38,
564
+ "learning_rate": 2e-05,
565
+ "loss": 2.0479,
566
+ "step": 465
567
+ },
568
+ {
569
+ "epoch": 0.38,
570
+ "learning_rate": 2e-05,
571
+ "loss": 2.0791,
572
+ "step": 470
573
+ },
574
+ {
575
+ "epoch": 0.38,
576
+ "learning_rate": 2e-05,
577
+ "loss": 2.1109,
578
+ "step": 475
579
+ },
580
+ {
581
+ "epoch": 0.39,
582
+ "learning_rate": 2e-05,
583
+ "loss": 2.0062,
584
+ "step": 480
585
+ },
586
+ {
587
+ "epoch": 0.39,
588
+ "learning_rate": 2e-05,
589
+ "loss": 2.0485,
590
+ "step": 485
591
+ },
592
+ {
593
+ "epoch": 0.4,
594
+ "learning_rate": 2e-05,
595
+ "loss": 1.9999,
596
+ "step": 490
597
+ },
598
+ {
599
+ "epoch": 0.4,
600
+ "learning_rate": 2e-05,
601
+ "loss": 1.9982,
602
+ "step": 495
603
+ },
604
+ {
605
+ "epoch": 0.4,
606
+ "learning_rate": 2e-05,
607
+ "loss": 2.0399,
608
+ "step": 500
609
+ },
610
+ {
611
+ "epoch": 0.41,
612
+ "learning_rate": 2e-05,
613
+ "loss": 2.0282,
614
+ "step": 505
615
+ },
616
+ {
617
+ "epoch": 0.41,
618
+ "learning_rate": 2e-05,
619
+ "loss": 2.064,
620
+ "step": 510
621
+ },
622
+ {
623
+ "epoch": 0.42,
624
+ "learning_rate": 2e-05,
625
+ "loss": 2.0239,
626
+ "step": 515
627
+ },
628
+ {
629
+ "epoch": 0.42,
630
+ "learning_rate": 2e-05,
631
+ "loss": 1.9875,
632
+ "step": 520
633
+ },
634
+ {
635
+ "epoch": 0.42,
636
+ "learning_rate": 2e-05,
637
+ "loss": 2.1219,
638
+ "step": 525
639
+ },
640
+ {
641
+ "epoch": 0.43,
642
+ "learning_rate": 2e-05,
643
+ "loss": 1.9841,
644
+ "step": 530
645
+ },
646
+ {
647
+ "epoch": 0.43,
648
+ "learning_rate": 2e-05,
649
+ "loss": 2.0484,
650
+ "step": 535
651
+ },
652
+ {
653
+ "epoch": 0.44,
654
+ "learning_rate": 2e-05,
655
+ "loss": 2.0757,
656
+ "step": 540
657
+ },
658
+ {
659
+ "epoch": 0.44,
660
+ "learning_rate": 2e-05,
661
+ "loss": 2.0275,
662
+ "step": 545
663
+ },
664
+ {
665
+ "epoch": 0.45,
666
+ "learning_rate": 2e-05,
667
+ "loss": 2.1235,
668
+ "step": 550
669
+ },
670
+ {
671
+ "epoch": 0.45,
672
+ "learning_rate": 2e-05,
673
+ "loss": 1.994,
674
+ "step": 555
675
+ },
676
+ {
677
+ "epoch": 0.45,
678
+ "learning_rate": 2e-05,
679
+ "loss": 2.0548,
680
+ "step": 560
681
+ },
682
+ {
683
+ "epoch": 0.46,
684
+ "learning_rate": 2e-05,
685
+ "loss": 2.0246,
686
+ "step": 565
687
+ },
688
+ {
689
+ "epoch": 0.46,
690
+ "learning_rate": 2e-05,
691
+ "loss": 2.0438,
692
+ "step": 570
693
+ },
694
+ {
695
+ "epoch": 0.47,
696
+ "learning_rate": 2e-05,
697
+ "loss": 1.9877,
698
+ "step": 575
699
+ },
700
+ {
701
+ "epoch": 0.47,
702
+ "learning_rate": 2e-05,
703
+ "loss": 2.0073,
704
+ "step": 580
705
+ },
706
+ {
707
+ "epoch": 0.47,
708
+ "learning_rate": 2e-05,
709
+ "loss": 2.0335,
710
+ "step": 585
711
+ },
712
+ {
713
+ "epoch": 0.48,
714
+ "learning_rate": 2e-05,
715
+ "loss": 1.9349,
716
+ "step": 590
717
+ },
718
+ {
719
+ "epoch": 0.48,
720
+ "learning_rate": 2e-05,
721
+ "loss": 2.0598,
722
+ "step": 595
723
+ },
724
+ {
725
+ "epoch": 0.49,
726
+ "learning_rate": 2e-05,
727
+ "loss": 2.1281,
728
+ "step": 600
729
+ },
730
+ {
731
+ "epoch": 0.49,
732
+ "learning_rate": 2e-05,
733
+ "loss": 2.1086,
734
+ "step": 605
735
+ },
736
+ {
737
+ "epoch": 0.49,
738
+ "learning_rate": 2e-05,
739
+ "loss": 2.0188,
740
+ "step": 610
741
+ },
742
+ {
743
+ "epoch": 0.5,
744
+ "learning_rate": 2e-05,
745
+ "loss": 2.0448,
746
+ "step": 615
747
+ },
748
+ {
749
+ "epoch": 0.5,
750
+ "learning_rate": 2e-05,
751
+ "loss": 2.1233,
752
+ "step": 620
753
+ },
754
+ {
755
+ "epoch": 0.51,
756
+ "learning_rate": 2e-05,
757
+ "loss": 1.9751,
758
+ "step": 625
759
+ },
760
+ {
761
+ "epoch": 0.51,
762
+ "learning_rate": 2e-05,
763
+ "loss": 2.0676,
764
+ "step": 630
765
+ },
766
+ {
767
+ "epoch": 0.51,
768
+ "learning_rate": 2e-05,
769
+ "loss": 2.0068,
770
+ "step": 635
771
+ },
772
+ {
773
+ "epoch": 0.52,
774
+ "learning_rate": 2e-05,
775
+ "loss": 2.0636,
776
+ "step": 640
777
+ },
778
+ {
779
+ "epoch": 0.52,
780
+ "learning_rate": 2e-05,
781
+ "loss": 2.012,
782
+ "step": 645
783
+ },
784
+ {
785
+ "epoch": 0.53,
786
+ "learning_rate": 2e-05,
787
+ "loss": 2.0323,
788
+ "step": 650
789
+ },
790
+ {
791
+ "epoch": 0.53,
792
+ "learning_rate": 2e-05,
793
+ "loss": 2.0697,
794
+ "step": 655
795
+ },
796
+ {
797
+ "epoch": 0.53,
798
+ "learning_rate": 2e-05,
799
+ "loss": 2.0221,
800
+ "step": 660
801
+ },
802
+ {
803
+ "epoch": 0.54,
804
+ "learning_rate": 2e-05,
805
+ "loss": 2.0391,
806
+ "step": 665
807
+ },
808
+ {
809
+ "epoch": 0.54,
810
+ "learning_rate": 2e-05,
811
+ "loss": 2.0517,
812
+ "step": 670
813
+ },
814
+ {
815
+ "epoch": 0.55,
816
+ "learning_rate": 2e-05,
817
+ "loss": 2.1092,
818
+ "step": 675
819
+ },
820
+ {
821
+ "epoch": 0.55,
822
+ "learning_rate": 2e-05,
823
+ "loss": 2.0735,
824
+ "step": 680
825
+ },
826
+ {
827
+ "epoch": 0.55,
828
+ "learning_rate": 2e-05,
829
+ "loss": 2.1768,
830
+ "step": 685
831
+ },
832
+ {
833
+ "epoch": 0.56,
834
+ "learning_rate": 2e-05,
835
+ "loss": 1.9814,
836
+ "step": 690
837
+ },
838
+ {
839
+ "epoch": 0.56,
840
+ "learning_rate": 2e-05,
841
+ "loss": 2.0082,
842
+ "step": 695
843
+ },
844
+ {
845
+ "epoch": 0.57,
846
+ "learning_rate": 2e-05,
847
+ "loss": 1.9932,
848
+ "step": 700
849
+ },
850
+ {
851
+ "epoch": 0.57,
852
+ "learning_rate": 2e-05,
853
+ "loss": 2.0701,
854
+ "step": 705
855
+ },
856
+ {
857
+ "epoch": 0.57,
858
+ "learning_rate": 2e-05,
859
+ "loss": 1.9849,
860
+ "step": 710
861
+ },
862
+ {
863
+ "epoch": 0.58,
864
+ "learning_rate": 2e-05,
865
+ "loss": 2.0469,
866
+ "step": 715
867
+ },
868
+ {
869
+ "epoch": 0.58,
870
+ "learning_rate": 2e-05,
871
+ "loss": 2.0328,
872
+ "step": 720
873
+ },
874
+ {
875
+ "epoch": 0.59,
876
+ "learning_rate": 2e-05,
877
+ "loss": 2.1638,
878
+ "step": 725
879
+ },
880
+ {
881
+ "epoch": 0.59,
882
+ "learning_rate": 2e-05,
883
+ "loss": 1.9913,
884
+ "step": 730
885
+ },
886
+ {
887
+ "epoch": 0.59,
888
+ "learning_rate": 2e-05,
889
+ "loss": 2.0312,
890
+ "step": 735
891
+ },
892
+ {
893
+ "epoch": 0.6,
894
+ "learning_rate": 2e-05,
895
+ "loss": 2.0468,
896
+ "step": 740
897
+ },
898
+ {
899
+ "epoch": 0.6,
900
+ "learning_rate": 2e-05,
901
+ "loss": 1.9856,
902
+ "step": 745
903
+ },
904
+ {
905
+ "epoch": 0.61,
906
+ "learning_rate": 2e-05,
907
+ "loss": 2.0258,
908
+ "step": 750
909
+ },
910
+ {
911
+ "epoch": 0.61,
912
+ "learning_rate": 2e-05,
913
+ "loss": 2.0983,
914
+ "step": 755
915
+ },
916
+ {
917
+ "epoch": 0.62,
918
+ "learning_rate": 2e-05,
919
+ "loss": 1.9871,
920
+ "step": 760
921
+ },
922
+ {
923
+ "epoch": 0.62,
924
+ "learning_rate": 2e-05,
925
+ "loss": 2.01,
926
+ "step": 765
927
+ },
928
+ {
929
+ "epoch": 0.62,
930
+ "learning_rate": 2e-05,
931
+ "loss": 2.0858,
932
+ "step": 770
933
+ },
934
+ {
935
+ "epoch": 0.63,
936
+ "learning_rate": 2e-05,
937
+ "loss": 2.056,
938
+ "step": 775
939
+ },
940
+ {
941
+ "epoch": 0.63,
942
+ "learning_rate": 2e-05,
943
+ "loss": 2.0671,
944
+ "step": 780
945
+ },
946
+ {
947
+ "epoch": 0.64,
948
+ "learning_rate": 2e-05,
949
+ "loss": 2.0151,
950
+ "step": 785
951
+ },
952
+ {
953
+ "epoch": 0.64,
954
+ "learning_rate": 2e-05,
955
+ "loss": 2.014,
956
+ "step": 790
957
+ },
958
+ {
959
+ "epoch": 0.64,
960
+ "learning_rate": 2e-05,
961
+ "loss": 1.9757,
962
+ "step": 795
963
+ },
964
+ {
965
+ "epoch": 0.65,
966
+ "learning_rate": 2e-05,
967
+ "loss": 2.0435,
968
+ "step": 800
969
+ },
970
+ {
971
+ "epoch": 0.65,
972
+ "learning_rate": 2e-05,
973
+ "loss": 1.9699,
974
+ "step": 805
975
+ },
976
+ {
977
+ "epoch": 0.66,
978
+ "learning_rate": 2e-05,
979
+ "loss": 2.1073,
980
+ "step": 810
981
+ },
982
+ {
983
+ "epoch": 0.66,
984
+ "learning_rate": 2e-05,
985
+ "loss": 2.0371,
986
+ "step": 815
987
+ },
988
+ {
989
+ "epoch": 0.66,
990
+ "learning_rate": 2e-05,
991
+ "loss": 1.9612,
992
+ "step": 820
993
+ },
994
+ {
995
+ "epoch": 0.67,
996
+ "learning_rate": 2e-05,
997
+ "loss": 2.0357,
998
+ "step": 825
999
+ },
1000
+ {
1001
+ "epoch": 0.67,
1002
+ "learning_rate": 2e-05,
1003
+ "loss": 1.9747,
1004
+ "step": 830
1005
+ },
1006
+ {
1007
+ "epoch": 0.68,
1008
+ "learning_rate": 2e-05,
1009
+ "loss": 2.0736,
1010
+ "step": 835
1011
+ },
1012
+ {
1013
+ "epoch": 0.68,
1014
+ "learning_rate": 2e-05,
1015
+ "loss": 2.0831,
1016
+ "step": 840
1017
+ },
1018
+ {
1019
+ "epoch": 0.68,
1020
+ "learning_rate": 2e-05,
1021
+ "loss": 2.1133,
1022
+ "step": 845
1023
+ },
1024
+ {
1025
+ "epoch": 0.69,
1026
+ "learning_rate": 2e-05,
1027
+ "loss": 1.9934,
1028
+ "step": 850
1029
+ },
1030
+ {
1031
+ "epoch": 0.69,
1032
+ "learning_rate": 2e-05,
1033
+ "loss": 1.8631,
1034
+ "step": 855
1035
+ },
1036
+ {
1037
+ "epoch": 0.7,
1038
+ "learning_rate": 2e-05,
1039
+ "loss": 2.0426,
1040
+ "step": 860
1041
+ },
1042
+ {
1043
+ "epoch": 0.7,
1044
+ "learning_rate": 2e-05,
1045
+ "loss": 2.0171,
1046
+ "step": 865
1047
+ },
1048
+ {
1049
+ "epoch": 0.7,
1050
+ "learning_rate": 2e-05,
1051
+ "loss": 1.9415,
1052
+ "step": 870
1053
+ },
1054
+ {
1055
+ "epoch": 0.71,
1056
+ "learning_rate": 2e-05,
1057
+ "loss": 1.914,
1058
+ "step": 875
1059
+ },
1060
+ {
1061
+ "epoch": 0.71,
1062
+ "learning_rate": 2e-05,
1063
+ "loss": 2.0661,
1064
+ "step": 880
1065
+ },
1066
+ {
1067
+ "epoch": 0.72,
1068
+ "learning_rate": 2e-05,
1069
+ "loss": 2.0792,
1070
+ "step": 885
1071
+ },
1072
+ {
1073
+ "epoch": 0.72,
1074
+ "learning_rate": 2e-05,
1075
+ "loss": 1.9541,
1076
+ "step": 890
1077
+ },
1078
+ {
1079
+ "epoch": 0.72,
1080
+ "learning_rate": 2e-05,
1081
+ "loss": 2.0045,
1082
+ "step": 895
1083
+ },
1084
+ {
1085
+ "epoch": 0.73,
1086
+ "learning_rate": 2e-05,
1087
+ "loss": 2.0326,
1088
+ "step": 900
1089
+ },
1090
+ {
1091
+ "epoch": 0.73,
1092
+ "learning_rate": 2e-05,
1093
+ "loss": 2.0406,
1094
+ "step": 905
1095
+ },
1096
+ {
1097
+ "epoch": 0.74,
1098
+ "learning_rate": 2e-05,
1099
+ "loss": 2.0131,
1100
+ "step": 910
1101
+ },
1102
+ {
1103
+ "epoch": 0.74,
1104
+ "learning_rate": 2e-05,
1105
+ "loss": 2.0479,
1106
+ "step": 915
1107
+ },
1108
+ {
1109
+ "epoch": 0.74,
1110
+ "learning_rate": 2e-05,
1111
+ "loss": 1.9801,
1112
+ "step": 920
1113
+ },
1114
+ {
1115
+ "epoch": 0.75,
1116
+ "learning_rate": 2e-05,
1117
+ "loss": 2.0129,
1118
+ "step": 925
1119
+ },
1120
+ {
1121
+ "epoch": 0.75,
1122
+ "learning_rate": 2e-05,
1123
+ "loss": 1.9463,
1124
+ "step": 930
1125
+ },
1126
+ {
1127
+ "epoch": 0.76,
1128
+ "learning_rate": 2e-05,
1129
+ "loss": 1.9324,
1130
+ "step": 935
1131
+ },
1132
+ {
1133
+ "epoch": 0.76,
1134
+ "learning_rate": 2e-05,
1135
+ "loss": 1.9729,
1136
+ "step": 940
1137
+ },
1138
+ {
1139
+ "epoch": 0.76,
1140
+ "learning_rate": 2e-05,
1141
+ "loss": 2.1066,
1142
+ "step": 945
1143
+ },
1144
+ {
1145
+ "epoch": 0.77,
1146
+ "learning_rate": 2e-05,
1147
+ "loss": 1.9615,
1148
+ "step": 950
1149
+ },
1150
+ {
1151
+ "epoch": 0.77,
1152
+ "learning_rate": 2e-05,
1153
+ "loss": 2.054,
1154
+ "step": 955
1155
+ },
1156
+ {
1157
+ "epoch": 0.78,
1158
+ "learning_rate": 2e-05,
1159
+ "loss": 1.9475,
1160
+ "step": 960
1161
+ },
1162
+ {
1163
+ "epoch": 0.78,
1164
+ "learning_rate": 2e-05,
1165
+ "loss": 1.9504,
1166
+ "step": 965
1167
+ },
1168
+ {
1169
+ "epoch": 0.79,
1170
+ "learning_rate": 2e-05,
1171
+ "loss": 1.9985,
1172
+ "step": 970
1173
+ },
1174
+ {
1175
+ "epoch": 0.79,
1176
+ "learning_rate": 2e-05,
1177
+ "loss": 1.9808,
1178
+ "step": 975
1179
+ },
1180
+ {
1181
+ "epoch": 0.79,
1182
+ "learning_rate": 2e-05,
1183
+ "loss": 1.9699,
1184
+ "step": 980
1185
+ },
1186
+ {
1187
+ "epoch": 0.8,
1188
+ "learning_rate": 2e-05,
1189
+ "loss": 1.9928,
1190
+ "step": 985
1191
+ },
1192
+ {
1193
+ "epoch": 0.8,
1194
+ "learning_rate": 2e-05,
1195
+ "loss": 1.9927,
1196
+ "step": 990
1197
+ },
1198
+ {
1199
+ "epoch": 0.81,
1200
+ "learning_rate": 2e-05,
1201
+ "loss": 2.0522,
1202
+ "step": 995
1203
+ },
1204
+ {
1205
+ "epoch": 0.81,
1206
+ "learning_rate": 2e-05,
1207
+ "loss": 2.0342,
1208
+ "step": 1000
1209
+ },
1210
+ {
1211
+ "epoch": 0.81,
1212
+ "learning_rate": 2e-05,
1213
+ "loss": 2.0291,
1214
+ "step": 1005
1215
+ },
1216
+ {
1217
+ "epoch": 0.82,
1218
+ "learning_rate": 2e-05,
1219
+ "loss": 2.0542,
1220
+ "step": 1010
1221
+ },
1222
+ {
1223
+ "epoch": 0.82,
1224
+ "learning_rate": 2e-05,
1225
+ "loss": 1.9575,
1226
+ "step": 1015
1227
+ },
1228
+ {
1229
+ "epoch": 0.83,
1230
+ "learning_rate": 2e-05,
1231
+ "loss": 2.0268,
1232
+ "step": 1020
1233
+ },
1234
+ {
1235
+ "epoch": 0.83,
1236
+ "learning_rate": 2e-05,
1237
+ "loss": 1.9652,
1238
+ "step": 1025
1239
+ },
1240
+ {
1241
+ "epoch": 0.83,
1242
+ "learning_rate": 2e-05,
1243
+ "loss": 2.0988,
1244
+ "step": 1030
1245
+ },
1246
+ {
1247
+ "epoch": 0.84,
1248
+ "learning_rate": 2e-05,
1249
+ "loss": 1.9705,
1250
+ "step": 1035
1251
+ },
1252
+ {
1253
+ "epoch": 0.84,
1254
+ "learning_rate": 2e-05,
1255
+ "loss": 1.9683,
1256
+ "step": 1040
1257
+ },
1258
+ {
1259
+ "epoch": 0.85,
1260
+ "learning_rate": 2e-05,
1261
+ "loss": 2.0333,
1262
+ "step": 1045
1263
+ },
1264
+ {
1265
+ "epoch": 0.85,
1266
+ "learning_rate": 2e-05,
1267
+ "loss": 2.0807,
1268
+ "step": 1050
1269
+ },
1270
+ {
1271
+ "epoch": 0.85,
1272
+ "learning_rate": 2e-05,
1273
+ "loss": 2.0138,
1274
+ "step": 1055
1275
+ },
1276
+ {
1277
+ "epoch": 0.86,
1278
+ "learning_rate": 2e-05,
1279
+ "loss": 1.9915,
1280
+ "step": 1060
1281
+ },
1282
+ {
1283
+ "epoch": 0.86,
1284
+ "learning_rate": 2e-05,
1285
+ "loss": 2.0396,
1286
+ "step": 1065
1287
+ },
1288
+ {
1289
+ "epoch": 0.87,
1290
+ "learning_rate": 2e-05,
1291
+ "loss": 2.0208,
1292
+ "step": 1070
1293
+ },
1294
+ {
1295
+ "epoch": 0.87,
1296
+ "learning_rate": 2e-05,
1297
+ "loss": 2.0008,
1298
+ "step": 1075
1299
+ },
1300
+ {
1301
+ "epoch": 0.87,
1302
+ "learning_rate": 2e-05,
1303
+ "loss": 1.9907,
1304
+ "step": 1080
1305
+ },
1306
+ {
1307
+ "epoch": 0.88,
1308
+ "learning_rate": 2e-05,
1309
+ "loss": 1.9137,
1310
+ "step": 1085
1311
+ },
1312
+ {
1313
+ "epoch": 0.88,
1314
+ "learning_rate": 2e-05,
1315
+ "loss": 2.0786,
1316
+ "step": 1090
1317
+ },
1318
+ {
1319
+ "epoch": 0.89,
1320
+ "learning_rate": 2e-05,
1321
+ "loss": 1.9445,
1322
+ "step": 1095
1323
+ },
1324
+ {
1325
+ "epoch": 0.89,
1326
+ "learning_rate": 2e-05,
1327
+ "loss": 2.0405,
1328
+ "step": 1100
1329
+ },
1330
+ {
1331
+ "epoch": 0.89,
1332
+ "learning_rate": 2e-05,
1333
+ "loss": 1.9961,
1334
+ "step": 1105
1335
+ },
1336
+ {
1337
+ "epoch": 0.9,
1338
+ "learning_rate": 2e-05,
1339
+ "loss": 1.9778,
1340
+ "step": 1110
1341
+ },
1342
+ {
1343
+ "epoch": 0.9,
1344
+ "learning_rate": 2e-05,
1345
+ "loss": 1.9785,
1346
+ "step": 1115
1347
+ },
1348
+ {
1349
+ "epoch": 0.91,
1350
+ "learning_rate": 2e-05,
1351
+ "loss": 2.0893,
1352
+ "step": 1120
1353
+ },
1354
+ {
1355
+ "epoch": 0.91,
1356
+ "learning_rate": 2e-05,
1357
+ "loss": 2.0206,
1358
+ "step": 1125
1359
+ },
1360
+ {
1361
+ "epoch": 0.91,
1362
+ "learning_rate": 2e-05,
1363
+ "loss": 2.0435,
1364
+ "step": 1130
1365
+ },
1366
+ {
1367
+ "epoch": 0.92,
1368
+ "learning_rate": 2e-05,
1369
+ "loss": 1.9512,
1370
+ "step": 1135
1371
+ },
1372
+ {
1373
+ "epoch": 0.92,
1374
+ "learning_rate": 2e-05,
1375
+ "loss": 2.0032,
1376
+ "step": 1140
1377
+ },
1378
+ {
1379
+ "epoch": 0.93,
1380
+ "learning_rate": 2e-05,
1381
+ "loss": 1.9493,
1382
+ "step": 1145
1383
+ },
1384
+ {
1385
+ "epoch": 0.93,
1386
+ "learning_rate": 2e-05,
1387
+ "loss": 1.9244,
1388
+ "step": 1150
1389
+ },
1390
+ {
1391
+ "epoch": 0.93,
1392
+ "learning_rate": 2e-05,
1393
+ "loss": 2.0021,
1394
+ "step": 1155
1395
+ },
1396
+ {
1397
+ "epoch": 0.94,
1398
+ "learning_rate": 2e-05,
1399
+ "loss": 1.9534,
1400
+ "step": 1160
1401
+ },
1402
+ {
1403
+ "epoch": 0.94,
1404
+ "learning_rate": 2e-05,
1405
+ "loss": 1.925,
1406
+ "step": 1165
1407
+ },
1408
+ {
1409
+ "epoch": 0.95,
1410
+ "learning_rate": 2e-05,
1411
+ "loss": 2.1044,
1412
+ "step": 1170
1413
+ },
1414
+ {
1415
+ "epoch": 0.95,
1416
+ "learning_rate": 2e-05,
1417
+ "loss": 2.0376,
1418
+ "step": 1175
1419
+ },
1420
+ {
1421
+ "epoch": 0.95,
1422
+ "learning_rate": 2e-05,
1423
+ "loss": 2.0542,
1424
+ "step": 1180
1425
+ },
1426
+ {
1427
+ "epoch": 0.96,
1428
+ "learning_rate": 2e-05,
1429
+ "loss": 1.9229,
1430
+ "step": 1185
1431
+ },
1432
+ {
1433
+ "epoch": 0.96,
1434
+ "learning_rate": 2e-05,
1435
+ "loss": 1.952,
1436
+ "step": 1190
1437
+ },
1438
+ {
1439
+ "epoch": 0.97,
1440
+ "learning_rate": 2e-05,
1441
+ "loss": 1.9914,
1442
+ "step": 1195
1443
+ },
1444
+ {
1445
+ "epoch": 0.97,
1446
+ "learning_rate": 2e-05,
1447
+ "loss": 1.9991,
1448
+ "step": 1200
1449
+ },
1450
+ {
1451
+ "epoch": 0.98,
1452
+ "learning_rate": 2e-05,
1453
+ "loss": 1.9702,
1454
+ "step": 1205
1455
+ },
1456
+ {
1457
+ "epoch": 0.98,
1458
+ "learning_rate": 2e-05,
1459
+ "loss": 1.8712,
1460
+ "step": 1210
1461
+ },
1462
+ {
1463
+ "epoch": 0.98,
1464
+ "learning_rate": 2e-05,
1465
+ "loss": 2.0369,
1466
+ "step": 1215
1467
+ },
1468
+ {
1469
+ "epoch": 0.99,
1470
+ "learning_rate": 2e-05,
1471
+ "loss": 2.1375,
1472
+ "step": 1220
1473
+ },
1474
+ {
1475
+ "epoch": 0.99,
1476
+ "learning_rate": 2e-05,
1477
+ "loss": 2.0707,
1478
+ "step": 1225
1479
+ },
1480
+ {
1481
+ "epoch": 1.0,
1482
+ "learning_rate": 2e-05,
1483
+ "loss": 1.9964,
1484
+ "step": 1230
1485
+ },
1486
+ {
1487
+ "epoch": 1.0,
1488
+ "learning_rate": 2e-05,
1489
+ "loss": 1.9424,
1490
+ "step": 1235
1491
+ },
1492
+ {
1493
+ "epoch": 1.0,
1494
+ "learning_rate": 2e-05,
1495
+ "loss": 1.9935,
1496
+ "step": 1240
1497
+ },
1498
+ {
1499
+ "epoch": 1.01,
1500
+ "learning_rate": 2e-05,
1501
+ "loss": 1.6404,
1502
+ "step": 1245
1503
+ },
1504
+ {
1505
+ "epoch": 1.01,
1506
+ "learning_rate": 2e-05,
1507
+ "loss": 1.5555,
1508
+ "step": 1250
1509
+ },
1510
+ {
1511
+ "epoch": 1.02,
1512
+ "learning_rate": 2e-05,
1513
+ "loss": 1.5406,
1514
+ "step": 1255
1515
+ },
1516
+ {
1517
+ "epoch": 1.02,
1518
+ "learning_rate": 2e-05,
1519
+ "loss": 1.6253,
1520
+ "step": 1260
1521
+ },
1522
+ {
1523
+ "epoch": 1.02,
1524
+ "learning_rate": 2e-05,
1525
+ "loss": 1.5516,
1526
+ "step": 1265
1527
+ },
1528
+ {
1529
+ "epoch": 1.03,
1530
+ "learning_rate": 2e-05,
1531
+ "loss": 1.4896,
1532
+ "step": 1270
1533
+ },
1534
+ {
1535
+ "epoch": 1.03,
1536
+ "learning_rate": 2e-05,
1537
+ "loss": 1.5545,
1538
+ "step": 1275
1539
+ },
1540
+ {
1541
+ "epoch": 1.04,
1542
+ "learning_rate": 2e-05,
1543
+ "loss": 1.5125,
1544
+ "step": 1280
1545
+ },
1546
+ {
1547
+ "epoch": 1.04,
1548
+ "learning_rate": 2e-05,
1549
+ "loss": 1.5455,
1550
+ "step": 1285
1551
+ },
1552
+ {
1553
+ "epoch": 1.04,
1554
+ "learning_rate": 2e-05,
1555
+ "loss": 1.4915,
1556
+ "step": 1290
1557
+ },
1558
+ {
1559
+ "epoch": 1.05,
1560
+ "learning_rate": 2e-05,
1561
+ "loss": 1.453,
1562
+ "step": 1295
1563
+ },
1564
+ {
1565
+ "epoch": 1.05,
1566
+ "learning_rate": 2e-05,
1567
+ "loss": 1.4764,
1568
+ "step": 1300
1569
+ },
1570
+ {
1571
+ "epoch": 1.06,
1572
+ "learning_rate": 2e-05,
1573
+ "loss": 1.5592,
1574
+ "step": 1305
1575
+ },
1576
+ {
1577
+ "epoch": 1.06,
1578
+ "learning_rate": 2e-05,
1579
+ "loss": 1.5472,
1580
+ "step": 1310
1581
+ },
1582
+ {
1583
+ "epoch": 1.06,
1584
+ "learning_rate": 2e-05,
1585
+ "loss": 1.4989,
1586
+ "step": 1315
1587
+ },
1588
+ {
1589
+ "epoch": 1.07,
1590
+ "learning_rate": 2e-05,
1591
+ "loss": 1.4987,
1592
+ "step": 1320
1593
+ },
1594
+ {
1595
+ "epoch": 1.07,
1596
+ "learning_rate": 2e-05,
1597
+ "loss": 1.451,
1598
+ "step": 1325
1599
+ },
1600
+ {
1601
+ "epoch": 1.08,
1602
+ "learning_rate": 2e-05,
1603
+ "loss": 1.5672,
1604
+ "step": 1330
1605
+ },
1606
+ {
1607
+ "epoch": 1.08,
1608
+ "learning_rate": 2e-05,
1609
+ "loss": 1.5399,
1610
+ "step": 1335
1611
+ },
1612
+ {
1613
+ "epoch": 1.08,
1614
+ "learning_rate": 2e-05,
1615
+ "loss": 1.5285,
1616
+ "step": 1340
1617
+ },
1618
+ {
1619
+ "epoch": 1.09,
1620
+ "learning_rate": 2e-05,
1621
+ "loss": 1.594,
1622
+ "step": 1345
1623
+ },
1624
+ {
1625
+ "epoch": 1.09,
1626
+ "learning_rate": 2e-05,
1627
+ "loss": 1.53,
1628
+ "step": 1350
1629
+ },
1630
+ {
1631
+ "epoch": 1.1,
1632
+ "learning_rate": 2e-05,
1633
+ "loss": 1.5641,
1634
+ "step": 1355
1635
+ },
1636
+ {
1637
+ "epoch": 1.1,
1638
+ "learning_rate": 2e-05,
1639
+ "loss": 1.5668,
1640
+ "step": 1360
1641
+ },
1642
+ {
1643
+ "epoch": 1.11,
1644
+ "learning_rate": 2e-05,
1645
+ "loss": 1.5265,
1646
+ "step": 1365
1647
+ },
1648
+ {
1649
+ "epoch": 1.11,
1650
+ "learning_rate": 2e-05,
1651
+ "loss": 1.4965,
1652
+ "step": 1370
1653
+ },
1654
+ {
1655
+ "epoch": 1.11,
1656
+ "learning_rate": 2e-05,
1657
+ "loss": 1.4974,
1658
+ "step": 1375
1659
+ },
1660
+ {
1661
+ "epoch": 1.12,
1662
+ "learning_rate": 2e-05,
1663
+ "loss": 1.5232,
1664
+ "step": 1380
1665
+ },
1666
+ {
1667
+ "epoch": 1.12,
1668
+ "learning_rate": 2e-05,
1669
+ "loss": 1.5223,
1670
+ "step": 1385
1671
+ },
1672
+ {
1673
+ "epoch": 1.13,
1674
+ "learning_rate": 2e-05,
1675
+ "loss": 1.5672,
1676
+ "step": 1390
1677
+ },
1678
+ {
1679
+ "epoch": 1.13,
1680
+ "learning_rate": 2e-05,
1681
+ "loss": 1.5194,
1682
+ "step": 1395
1683
+ },
1684
+ {
1685
+ "epoch": 1.13,
1686
+ "learning_rate": 2e-05,
1687
+ "loss": 1.4906,
1688
+ "step": 1400
1689
+ },
1690
+ {
1691
+ "epoch": 1.14,
1692
+ "learning_rate": 2e-05,
1693
+ "loss": 1.5467,
1694
+ "step": 1405
1695
+ },
1696
+ {
1697
+ "epoch": 1.14,
1698
+ "learning_rate": 2e-05,
1699
+ "loss": 1.428,
1700
+ "step": 1410
1701
+ },
1702
+ {
1703
+ "epoch": 1.15,
1704
+ "learning_rate": 2e-05,
1705
+ "loss": 1.5783,
1706
+ "step": 1415
1707
+ },
1708
+ {
1709
+ "epoch": 1.15,
1710
+ "learning_rate": 2e-05,
1711
+ "loss": 1.4938,
1712
+ "step": 1420
1713
+ },
1714
+ {
1715
+ "epoch": 1.15,
1716
+ "learning_rate": 2e-05,
1717
+ "loss": 1.485,
1718
+ "step": 1425
1719
+ },
1720
+ {
1721
+ "epoch": 1.16,
1722
+ "learning_rate": 2e-05,
1723
+ "loss": 1.5796,
1724
+ "step": 1430
1725
+ },
1726
+ {
1727
+ "epoch": 1.16,
1728
+ "learning_rate": 2e-05,
1729
+ "loss": 1.491,
1730
+ "step": 1435
1731
+ },
1732
+ {
1733
+ "epoch": 1.17,
1734
+ "learning_rate": 2e-05,
1735
+ "loss": 1.4907,
1736
+ "step": 1440
1737
+ },
1738
+ {
1739
+ "epoch": 1.17,
1740
+ "learning_rate": 2e-05,
1741
+ "loss": 1.4874,
1742
+ "step": 1445
1743
+ },
1744
+ {
1745
+ "epoch": 1.17,
1746
+ "learning_rate": 2e-05,
1747
+ "loss": 1.5549,
1748
+ "step": 1450
1749
+ },
1750
+ {
1751
+ "epoch": 1.18,
1752
+ "learning_rate": 2e-05,
1753
+ "loss": 1.5494,
1754
+ "step": 1455
1755
+ },
1756
+ {
1757
+ "epoch": 1.18,
1758
+ "learning_rate": 2e-05,
1759
+ "loss": 1.5035,
1760
+ "step": 1460
1761
+ },
1762
+ {
1763
+ "epoch": 1.19,
1764
+ "learning_rate": 2e-05,
1765
+ "loss": 1.545,
1766
+ "step": 1465
1767
+ },
1768
+ {
1769
+ "epoch": 1.19,
1770
+ "learning_rate": 2e-05,
1771
+ "loss": 1.498,
1772
+ "step": 1470
1773
+ },
1774
+ {
1775
+ "epoch": 1.19,
1776
+ "learning_rate": 2e-05,
1777
+ "loss": 1.5352,
1778
+ "step": 1475
1779
+ },
1780
+ {
1781
+ "epoch": 1.2,
1782
+ "learning_rate": 2e-05,
1783
+ "loss": 1.4939,
1784
+ "step": 1480
1785
+ },
1786
+ {
1787
+ "epoch": 1.2,
1788
+ "learning_rate": 2e-05,
1789
+ "loss": 1.5376,
1790
+ "step": 1485
1791
+ },
1792
+ {
1793
+ "epoch": 1.21,
1794
+ "learning_rate": 2e-05,
1795
+ "loss": 1.4745,
1796
+ "step": 1490
1797
+ },
1798
+ {
1799
+ "epoch": 1.21,
1800
+ "learning_rate": 2e-05,
1801
+ "loss": 1.5165,
1802
+ "step": 1495
1803
+ },
1804
+ {
1805
+ "epoch": 1.21,
1806
+ "learning_rate": 2e-05,
1807
+ "loss": 1.4921,
1808
+ "step": 1500
1809
+ },
1810
+ {
1811
+ "epoch": 1.22,
1812
+ "learning_rate": 2e-05,
1813
+ "loss": 1.5543,
1814
+ "step": 1505
1815
+ },
1816
+ {
1817
+ "epoch": 1.22,
1818
+ "learning_rate": 2e-05,
1819
+ "loss": 1.5212,
1820
+ "step": 1510
1821
+ },
1822
+ {
1823
+ "epoch": 1.23,
1824
+ "learning_rate": 2e-05,
1825
+ "loss": 1.5417,
1826
+ "step": 1515
1827
+ },
1828
+ {
1829
+ "epoch": 1.23,
1830
+ "learning_rate": 2e-05,
1831
+ "loss": 1.5707,
1832
+ "step": 1520
1833
+ },
1834
+ {
1835
+ "epoch": 1.23,
1836
+ "learning_rate": 2e-05,
1837
+ "loss": 1.5293,
1838
+ "step": 1525
1839
+ },
1840
+ {
1841
+ "epoch": 1.24,
1842
+ "learning_rate": 2e-05,
1843
+ "loss": 1.5243,
1844
+ "step": 1530
1845
+ },
1846
+ {
1847
+ "epoch": 1.24,
1848
+ "learning_rate": 2e-05,
1849
+ "loss": 1.5852,
1850
+ "step": 1535
1851
+ },
1852
+ {
1853
+ "epoch": 1.25,
1854
+ "learning_rate": 2e-05,
1855
+ "loss": 1.5043,
1856
+ "step": 1540
1857
+ },
1858
+ {
1859
+ "epoch": 1.25,
1860
+ "learning_rate": 2e-05,
1861
+ "loss": 1.4132,
1862
+ "step": 1545
1863
+ },
1864
+ {
1865
+ "epoch": 1.25,
1866
+ "learning_rate": 2e-05,
1867
+ "loss": 1.5171,
1868
+ "step": 1550
1869
+ },
1870
+ {
1871
+ "epoch": 1.26,
1872
+ "learning_rate": 2e-05,
1873
+ "loss": 1.4841,
1874
+ "step": 1555
1875
+ },
1876
+ {
1877
+ "epoch": 1.26,
1878
+ "learning_rate": 2e-05,
1879
+ "loss": 1.5396,
1880
+ "step": 1560
1881
+ },
1882
+ {
1883
+ "epoch": 1.27,
1884
+ "learning_rate": 2e-05,
1885
+ "loss": 1.5959,
1886
+ "step": 1565
1887
+ },
1888
+ {
1889
+ "epoch": 1.27,
1890
+ "learning_rate": 2e-05,
1891
+ "loss": 1.5522,
1892
+ "step": 1570
1893
+ },
1894
+ {
1895
+ "epoch": 1.28,
1896
+ "learning_rate": 2e-05,
1897
+ "loss": 1.5074,
1898
+ "step": 1575
1899
+ },
1900
+ {
1901
+ "epoch": 1.28,
1902
+ "learning_rate": 2e-05,
1903
+ "loss": 1.5717,
1904
+ "step": 1580
1905
+ },
1906
+ {
1907
+ "epoch": 1.28,
1908
+ "learning_rate": 2e-05,
1909
+ "loss": 1.6052,
1910
+ "step": 1585
1911
+ },
1912
+ {
1913
+ "epoch": 1.29,
1914
+ "learning_rate": 2e-05,
1915
+ "loss": 1.5021,
1916
+ "step": 1590
1917
+ },
1918
+ {
1919
+ "epoch": 1.29,
1920
+ "learning_rate": 2e-05,
1921
+ "loss": 1.5688,
1922
+ "step": 1595
1923
+ },
1924
+ {
1925
+ "epoch": 1.3,
1926
+ "learning_rate": 2e-05,
1927
+ "loss": 1.5272,
1928
+ "step": 1600
1929
+ },
1930
+ {
1931
+ "epoch": 1.3,
1932
+ "learning_rate": 2e-05,
1933
+ "loss": 1.6127,
1934
+ "step": 1605
1935
+ },
1936
+ {
1937
+ "epoch": 1.3,
1938
+ "learning_rate": 2e-05,
1939
+ "loss": 1.5163,
1940
+ "step": 1610
1941
+ },
1942
+ {
1943
+ "epoch": 1.31,
1944
+ "learning_rate": 2e-05,
1945
+ "loss": 1.4874,
1946
+ "step": 1615
1947
+ },
1948
+ {
1949
+ "epoch": 1.31,
1950
+ "learning_rate": 2e-05,
1951
+ "loss": 1.4935,
1952
+ "step": 1620
1953
+ },
1954
+ {
1955
+ "epoch": 1.32,
1956
+ "learning_rate": 2e-05,
1957
+ "loss": 1.5667,
1958
+ "step": 1625
1959
+ },
1960
+ {
1961
+ "epoch": 1.32,
1962
+ "learning_rate": 2e-05,
1963
+ "loss": 1.5686,
1964
+ "step": 1630
1965
+ },
1966
+ {
1967
+ "epoch": 1.32,
1968
+ "learning_rate": 2e-05,
1969
+ "loss": 1.5291,
1970
+ "step": 1635
1971
+ },
1972
+ {
1973
+ "epoch": 1.33,
1974
+ "learning_rate": 2e-05,
1975
+ "loss": 1.5299,
1976
+ "step": 1640
1977
+ },
1978
+ {
1979
+ "epoch": 1.33,
1980
+ "learning_rate": 2e-05,
1981
+ "loss": 1.5583,
1982
+ "step": 1645
1983
+ },
1984
+ {
1985
+ "epoch": 1.34,
1986
+ "learning_rate": 2e-05,
1987
+ "loss": 1.5004,
1988
+ "step": 1650
1989
+ },
1990
+ {
1991
+ "epoch": 1.34,
1992
+ "learning_rate": 2e-05,
1993
+ "loss": 1.552,
1994
+ "step": 1655
1995
+ },
1996
+ {
1997
+ "epoch": 1.34,
1998
+ "learning_rate": 2e-05,
1999
+ "loss": 1.5334,
2000
+ "step": 1660
2001
+ },
2002
+ {
2003
+ "epoch": 1.35,
2004
+ "learning_rate": 2e-05,
2005
+ "loss": 1.5249,
2006
+ "step": 1665
2007
+ },
2008
+ {
2009
+ "epoch": 1.35,
2010
+ "learning_rate": 2e-05,
2011
+ "loss": 1.5694,
2012
+ "step": 1670
2013
+ },
2014
+ {
2015
+ "epoch": 1.36,
2016
+ "learning_rate": 2e-05,
2017
+ "loss": 1.4854,
2018
+ "step": 1675
2019
+ },
2020
+ {
2021
+ "epoch": 1.36,
2022
+ "learning_rate": 2e-05,
2023
+ "loss": 1.4816,
2024
+ "step": 1680
2025
+ },
2026
+ {
2027
+ "epoch": 1.36,
2028
+ "learning_rate": 2e-05,
2029
+ "loss": 1.5268,
2030
+ "step": 1685
2031
+ },
2032
+ {
2033
+ "epoch": 1.37,
2034
+ "learning_rate": 2e-05,
2035
+ "loss": 1.4951,
2036
+ "step": 1690
2037
+ },
2038
+ {
2039
+ "epoch": 1.37,
2040
+ "learning_rate": 2e-05,
2041
+ "loss": 1.5026,
2042
+ "step": 1695
2043
+ },
2044
+ {
2045
+ "epoch": 1.38,
2046
+ "learning_rate": 2e-05,
2047
+ "loss": 1.5675,
2048
+ "step": 1700
2049
+ },
2050
+ {
2051
+ "epoch": 1.38,
2052
+ "learning_rate": 2e-05,
2053
+ "loss": 1.5503,
2054
+ "step": 1705
2055
+ },
2056
+ {
2057
+ "epoch": 1.38,
2058
+ "learning_rate": 2e-05,
2059
+ "loss": 1.6134,
2060
+ "step": 1710
2061
+ },
2062
+ {
2063
+ "epoch": 1.39,
2064
+ "learning_rate": 2e-05,
2065
+ "loss": 1.5292,
2066
+ "step": 1715
2067
+ },
2068
+ {
2069
+ "epoch": 1.39,
2070
+ "learning_rate": 2e-05,
2071
+ "loss": 1.4991,
2072
+ "step": 1720
2073
+ },
2074
+ {
2075
+ "epoch": 1.4,
2076
+ "learning_rate": 2e-05,
2077
+ "loss": 1.5183,
2078
+ "step": 1725
2079
+ },
2080
+ {
2081
+ "epoch": 1.4,
2082
+ "learning_rate": 2e-05,
2083
+ "loss": 1.5103,
2084
+ "step": 1730
2085
+ },
2086
+ {
2087
+ "epoch": 1.4,
2088
+ "learning_rate": 2e-05,
2089
+ "loss": 1.5129,
2090
+ "step": 1735
2091
+ },
2092
+ {
2093
+ "epoch": 1.41,
2094
+ "learning_rate": 2e-05,
2095
+ "loss": 1.6066,
2096
+ "step": 1740
2097
+ },
2098
+ {
2099
+ "epoch": 1.41,
2100
+ "learning_rate": 2e-05,
2101
+ "loss": 1.6065,
2102
+ "step": 1745
2103
+ },
2104
+ {
2105
+ "epoch": 1.42,
2106
+ "learning_rate": 2e-05,
2107
+ "loss": 1.5733,
2108
+ "step": 1750
2109
+ },
2110
+ {
2111
+ "epoch": 1.42,
2112
+ "learning_rate": 2e-05,
2113
+ "loss": 1.4913,
2114
+ "step": 1755
2115
+ },
2116
+ {
2117
+ "epoch": 1.42,
2118
+ "learning_rate": 2e-05,
2119
+ "loss": 1.5468,
2120
+ "step": 1760
2121
+ },
2122
+ {
2123
+ "epoch": 1.43,
2124
+ "learning_rate": 2e-05,
2125
+ "loss": 1.596,
2126
+ "step": 1765
2127
+ },
2128
+ {
2129
+ "epoch": 1.43,
2130
+ "learning_rate": 2e-05,
2131
+ "loss": 1.49,
2132
+ "step": 1770
2133
+ },
2134
+ {
2135
+ "epoch": 1.44,
2136
+ "learning_rate": 2e-05,
2137
+ "loss": 1.5589,
2138
+ "step": 1775
2139
+ },
2140
+ {
2141
+ "epoch": 1.44,
2142
+ "learning_rate": 2e-05,
2143
+ "loss": 1.5661,
2144
+ "step": 1780
2145
+ },
2146
+ {
2147
+ "epoch": 1.45,
2148
+ "learning_rate": 2e-05,
2149
+ "loss": 1.5703,
2150
+ "step": 1785
2151
+ },
2152
+ {
2153
+ "epoch": 1.45,
2154
+ "learning_rate": 2e-05,
2155
+ "loss": 1.6092,
2156
+ "step": 1790
2157
+ }
2158
+ ],
2159
+ "max_steps": 2470,
2160
+ "num_train_epochs": 2,
2161
+ "total_flos": 8.862715475793019e+17,
2162
+ "trial_name": null,
2163
+ "trial_params": null
2164
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:83c9435f9d13e7de946370411fba2d7164d2ba4c8e0d09bb7ef551c5b6a58ee9
3
- size 4015
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccc24300f7e033dad3fb336ef3c16599d6de8427088ebd5afd5853b0fd9fa708
3
+ size 4207
zero_to_fp32.py CHANGED
@@ -12,6 +12,7 @@ import torch
12
  import glob
13
  import math
14
  import os
 
15
  from collections import OrderedDict
16
 
17
  # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
@@ -34,6 +35,19 @@ debug = 0
34
  device = torch.device('cpu')
35
 
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  def get_model_state_file(checkpoint_dir, zero_stage):
38
  if not os.path.isdir(checkpoint_dir):
39
  raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
@@ -52,7 +66,9 @@ def get_model_state_file(checkpoint_dir, zero_stage):
52
 
53
  def get_optim_files(checkpoint_dir):
54
  # XXX: need to test that this simple glob rule works for multi-node setup too
55
- optim_files = sorted(glob.glob(os.path.join(checkpoint_dir, "*_optim_states.pt")))
 
 
56
 
57
  if len(optim_files) == 0:
58
  raise FileNotFoundError(
 
12
  import glob
13
  import math
14
  import os
15
+ import re
16
  from collections import OrderedDict
17
 
18
  # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
 
35
  device = torch.device('cpu')
36
 
37
 
38
+ def atoi(text):
39
+ return int(text) if text.isdigit() else text
40
+
41
+
42
+ def natural_keys(text):
43
+ '''
44
+ alist.sort(key=natural_keys) sorts in human order
45
+ http://nedbatchelder.com/blog/200712/human_sorting.html
46
+ (See Toothy's implementation in the comments)
47
+ '''
48
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
49
+
50
+
51
  def get_model_state_file(checkpoint_dir, zero_stage):
52
  if not os.path.isdir(checkpoint_dir):
53
  raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
 
66
 
67
  def get_optim_files(checkpoint_dir):
68
  # XXX: need to test that this simple glob rule works for multi-node setup too
69
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
70
+ "*_optim_states.pt")),
71
+ key=natural_keys)
72
 
73
  if len(optim_files) == 0:
74
  raise FileNotFoundError(