upd chkpt +3 epochs additional finetuning
Browse files- .gitattributes +5 -1
- config.json +2 -2
- latest +1 -0
- pytorch_model.bin +1 -1
- rng_state.pth +3 -0
- tokenizer_config.json +1 -1
- trainer_state.json +353 -362
- training_args.bin +2 -2
- zero_to_fp32.py +482 -0
.gitattributes
CHANGED
@@ -9,10 +9,14 @@
|
|
9 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
12 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
16 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
@@ -23,5 +27,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
23 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
9 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
20 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
27 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "pszemraj/grammar-synthesis-base-
|
3 |
"architectures": [
|
4 |
"T5ForConditionalGeneration"
|
5 |
],
|
@@ -30,7 +30,7 @@
|
|
30 |
"relative_attention_num_buckets": 32,
|
31 |
"tie_word_embeddings": false,
|
32 |
"torch_dtype": "float32",
|
33 |
-
"transformers_version": "4.
|
34 |
"use_cache": false,
|
35 |
"vocab_size": 32128
|
36 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "pszemraj/grammar-synthesis-base-V2",
|
3 |
"architectures": [
|
4 |
"T5ForConditionalGeneration"
|
5 |
],
|
|
|
30 |
"relative_attention_num_buckets": 32,
|
31 |
"tie_word_embeddings": false,
|
32 |
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.21.1",
|
34 |
"use_cache": false,
|
35 |
"vocab_size": 32128
|
36 |
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step350
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 990347691
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ce6574f3eca389526e65d8d577deb76467a77c374a05ef9933687ca4cb4456c
|
3 |
size 990347691
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c29f7470f494caf666906f135f44706bfe971f407f95a5c818f60f7b0482f2fa
|
3 |
+
size 14503
|
tokenizer_config.json
CHANGED
@@ -104,7 +104,7 @@
|
|
104 |
"eos_token": "</s>",
|
105 |
"extra_ids": 100,
|
106 |
"model_max_length": 512,
|
107 |
-
"name_or_path": "pszemraj/grammar-synthesis-base-
|
108 |
"pad_token": "<pad>",
|
109 |
"sp_model_kwargs": {},
|
110 |
"special_tokens_map_file": "/home/patrick/.cache/huggingface/transformers/76bf19bfedb85afbe644966ca9ab7b0404d753a41bf601115bced39f825ffa9c.c94798918c92ded6aeef2d2f0e666d2cc4145eca1aa6e1336fde07f2e13e2f46",
|
|
|
104 |
"eos_token": "</s>",
|
105 |
"extra_ids": 100,
|
106 |
"model_max_length": 512,
|
107 |
+
"name_or_path": "pszemraj/grammar-synthesis-base-V2",
|
108 |
"pad_token": "<pad>",
|
109 |
"sp_model_kwargs": {},
|
110 |
"special_tokens_map_file": "/home/patrick/.cache/huggingface/transformers/76bf19bfedb85afbe644966ca9ab7b0404d753a41bf601115bced39f825ffa9c.c94798918c92ded6aeef2d2f0e666d2cc4145eca1aa6e1336fde07f2e13e2f46",
|
trainer_state.json
CHANGED
@@ -1,1075 +1,1066 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch":
|
5 |
-
"global_step":
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.01,
|
12 |
-
"learning_rate":
|
13 |
-
"loss": 0.
|
14 |
"step": 2
|
15 |
},
|
16 |
{
|
17 |
"epoch": 0.01,
|
18 |
-
"learning_rate":
|
19 |
-
"loss": 0.
|
20 |
"step": 4
|
21 |
},
|
22 |
{
|
23 |
"epoch": 0.02,
|
24 |
-
"learning_rate":
|
25 |
-
"loss": 0.
|
26 |
"step": 6
|
27 |
},
|
28 |
{
|
29 |
"epoch": 0.02,
|
30 |
-
"learning_rate":
|
31 |
-
"loss": 0.
|
32 |
"step": 8
|
33 |
},
|
34 |
{
|
35 |
"epoch": 0.03,
|
36 |
-
"learning_rate":
|
37 |
-
"loss": 0.
|
38 |
"step": 10
|
39 |
},
|
40 |
{
|
41 |
"epoch": 0.03,
|
42 |
-
"learning_rate":
|
43 |
-
"loss": 0.
|
44 |
"step": 12
|
45 |
},
|
46 |
{
|
47 |
"epoch": 0.04,
|
48 |
-
"learning_rate":
|
49 |
-
"loss": 0.
|
50 |
"step": 14
|
51 |
},
|
52 |
{
|
53 |
"epoch": 0.05,
|
54 |
-
"learning_rate":
|
55 |
-
"loss": 0.
|
56 |
"step": 16
|
57 |
},
|
58 |
{
|
59 |
"epoch": 0.05,
|
60 |
-
"learning_rate":
|
61 |
-
"loss": 0.
|
62 |
"step": 18
|
63 |
},
|
64 |
{
|
65 |
"epoch": 0.06,
|
66 |
-
"learning_rate":
|
67 |
-
"loss": 0.
|
68 |
"step": 20
|
69 |
},
|
70 |
{
|
71 |
"epoch": 0.06,
|
72 |
-
"learning_rate":
|
73 |
-
"loss": 0.
|
74 |
"step": 22
|
75 |
},
|
76 |
{
|
77 |
"epoch": 0.07,
|
78 |
-
"learning_rate":
|
79 |
-
"loss": 0.
|
80 |
"step": 24
|
81 |
},
|
82 |
{
|
83 |
"epoch": 0.07,
|
84 |
-
"learning_rate":
|
85 |
-
"loss": 0.
|
86 |
"step": 26
|
87 |
},
|
88 |
{
|
89 |
"epoch": 0.08,
|
90 |
-
"learning_rate":
|
91 |
-
"loss": 0.
|
92 |
"step": 28
|
93 |
},
|
94 |
{
|
95 |
"epoch": 0.09,
|
96 |
-
"learning_rate":
|
97 |
-
"loss": 0.
|
98 |
"step": 30
|
99 |
},
|
100 |
{
|
101 |
"epoch": 0.09,
|
102 |
-
"learning_rate":
|
103 |
-
"loss": 0.
|
104 |
"step": 32
|
105 |
},
|
106 |
{
|
107 |
"epoch": 0.1,
|
108 |
-
"learning_rate":
|
109 |
-
"loss": 0.
|
110 |
"step": 34
|
111 |
},
|
112 |
{
|
113 |
"epoch": 0.1,
|
114 |
-
"learning_rate":
|
115 |
-
"loss": 0.
|
116 |
"step": 36
|
117 |
},
|
118 |
{
|
119 |
"epoch": 0.11,
|
120 |
-
"learning_rate":
|
121 |
-
"loss": 0.
|
122 |
"step": 38
|
123 |
},
|
124 |
{
|
125 |
"epoch": 0.11,
|
126 |
-
"learning_rate":
|
127 |
-
"loss": 0.
|
128 |
"step": 40
|
129 |
},
|
130 |
{
|
131 |
"epoch": 0.12,
|
132 |
-
"learning_rate":
|
133 |
-
"loss": 0.
|
134 |
"step": 42
|
135 |
},
|
136 |
{
|
137 |
"epoch": 0.13,
|
138 |
-
"learning_rate":
|
139 |
-
"loss": 0.
|
140 |
"step": 44
|
141 |
},
|
142 |
{
|
143 |
"epoch": 0.13,
|
144 |
-
"learning_rate":
|
145 |
-
"loss": 0.
|
146 |
"step": 46
|
147 |
},
|
148 |
{
|
149 |
"epoch": 0.14,
|
150 |
-
"learning_rate":
|
151 |
-
"loss": 0.
|
152 |
"step": 48
|
153 |
},
|
154 |
{
|
155 |
"epoch": 0.14,
|
156 |
-
"learning_rate":
|
157 |
-
"loss": 0.
|
158 |
"step": 50
|
159 |
},
|
160 |
{
|
161 |
"epoch": 0.15,
|
162 |
-
"learning_rate":
|
163 |
-
"loss": 0.
|
164 |
"step": 52
|
165 |
},
|
166 |
{
|
167 |
"epoch": 0.15,
|
168 |
-
"learning_rate":
|
169 |
-
"loss": 0.
|
170 |
"step": 54
|
171 |
},
|
172 |
{
|
173 |
"epoch": 0.16,
|
174 |
-
"learning_rate":
|
175 |
-
"loss": 0.
|
176 |
"step": 56
|
177 |
},
|
178 |
{
|
179 |
"epoch": 0.17,
|
180 |
-
"learning_rate":
|
181 |
-
"loss": 0.
|
182 |
"step": 58
|
183 |
},
|
184 |
{
|
185 |
"epoch": 0.17,
|
186 |
-
"learning_rate":
|
187 |
-
"loss": 0.
|
188 |
"step": 60
|
189 |
},
|
190 |
{
|
191 |
"epoch": 0.18,
|
192 |
-
"learning_rate":
|
193 |
-
"loss": 0.
|
194 |
"step": 62
|
195 |
},
|
196 |
{
|
197 |
"epoch": 0.18,
|
198 |
-
"learning_rate":
|
199 |
-
"loss": 0.
|
200 |
"step": 64
|
201 |
},
|
202 |
{
|
203 |
"epoch": 0.19,
|
204 |
-
"learning_rate":
|
205 |
-
"loss": 0.
|
206 |
"step": 66
|
207 |
},
|
208 |
{
|
209 |
"epoch": 0.19,
|
210 |
-
"learning_rate":
|
211 |
-
"loss": 0.
|
212 |
"step": 68
|
213 |
},
|
214 |
{
|
215 |
"epoch": 0.2,
|
216 |
-
"learning_rate":
|
217 |
-
"loss": 0.
|
218 |
"step": 70
|
219 |
},
|
220 |
{
|
221 |
"epoch": 0.21,
|
222 |
-
"learning_rate":
|
223 |
-
"loss": 0.
|
224 |
"step": 72
|
225 |
},
|
226 |
{
|
227 |
"epoch": 0.21,
|
228 |
-
"learning_rate":
|
229 |
-
"loss": 0.
|
230 |
"step": 74
|
231 |
},
|
232 |
{
|
233 |
"epoch": 0.22,
|
234 |
-
"learning_rate":
|
235 |
-
"loss": 0.
|
236 |
"step": 76
|
237 |
},
|
238 |
{
|
239 |
"epoch": 0.22,
|
240 |
-
"learning_rate":
|
241 |
-
"loss": 0.
|
242 |
"step": 78
|
243 |
},
|
244 |
{
|
245 |
"epoch": 0.23,
|
246 |
-
"learning_rate":
|
247 |
-
"loss": 0.
|
248 |
"step": 80
|
249 |
},
|
250 |
{
|
251 |
"epoch": 0.23,
|
252 |
-
"learning_rate":
|
253 |
-
"loss": 0.
|
254 |
"step": 82
|
255 |
},
|
256 |
{
|
257 |
"epoch": 0.24,
|
258 |
-
"learning_rate":
|
259 |
-
"loss": 0.
|
260 |
"step": 84
|
261 |
},
|
262 |
{
|
263 |
"epoch": 0.25,
|
264 |
-
"learning_rate":
|
265 |
-
"loss": 0.
|
266 |
"step": 86
|
267 |
},
|
268 |
{
|
269 |
"epoch": 0.25,
|
270 |
-
"learning_rate":
|
271 |
-
"loss": 0.
|
272 |
"step": 88
|
273 |
},
|
274 |
{
|
275 |
"epoch": 0.26,
|
276 |
-
"learning_rate":
|
277 |
-
"loss": 0.
|
278 |
"step": 90
|
279 |
},
|
280 |
{
|
281 |
"epoch": 0.26,
|
282 |
-
"learning_rate":
|
283 |
-
"loss": 0.
|
284 |
"step": 92
|
285 |
},
|
286 |
{
|
287 |
"epoch": 0.27,
|
288 |
-
"learning_rate":
|
289 |
-
"loss": 0.
|
290 |
"step": 94
|
291 |
},
|
292 |
{
|
293 |
"epoch": 0.27,
|
294 |
-
"learning_rate":
|
295 |
-
"loss": 0.
|
296 |
"step": 96
|
297 |
},
|
298 |
{
|
299 |
"epoch": 0.28,
|
300 |
-
"learning_rate":
|
301 |
-
"loss": 0.
|
302 |
"step": 98
|
303 |
},
|
304 |
{
|
305 |
"epoch": 0.28,
|
306 |
-
"learning_rate":
|
307 |
-
"loss": 0.
|
308 |
"step": 100
|
309 |
},
|
310 |
{
|
311 |
"epoch": 0.29,
|
312 |
-
"learning_rate":
|
313 |
-
"loss": 0.
|
314 |
"step": 102
|
315 |
},
|
316 |
{
|
317 |
"epoch": 0.3,
|
318 |
-
"learning_rate":
|
319 |
-
"loss": 0.
|
320 |
"step": 104
|
321 |
},
|
322 |
{
|
323 |
"epoch": 0.3,
|
324 |
-
"learning_rate":
|
325 |
-
"loss": 0.
|
326 |
"step": 106
|
327 |
},
|
328 |
{
|
329 |
"epoch": 0.31,
|
330 |
-
"learning_rate":
|
331 |
-
"loss": 0.
|
332 |
"step": 108
|
333 |
},
|
334 |
{
|
335 |
"epoch": 0.31,
|
336 |
-
"learning_rate":
|
337 |
-
"loss": 0.
|
338 |
"step": 110
|
339 |
},
|
340 |
{
|
341 |
"epoch": 0.32,
|
342 |
-
"learning_rate":
|
343 |
-
"loss": 0.
|
344 |
"step": 112
|
345 |
},
|
346 |
{
|
347 |
"epoch": 0.32,
|
348 |
-
"learning_rate":
|
349 |
-
"loss": 0.
|
350 |
"step": 114
|
351 |
},
|
352 |
{
|
353 |
"epoch": 0.33,
|
354 |
-
"learning_rate":
|
355 |
-
"loss": 0.
|
356 |
"step": 116
|
357 |
},
|
358 |
{
|
359 |
"epoch": 0.34,
|
360 |
-
"learning_rate":
|
361 |
-
"loss": 0.
|
362 |
"step": 118
|
363 |
},
|
364 |
{
|
365 |
"epoch": 0.34,
|
366 |
-
"learning_rate":
|
367 |
-
"loss": 0.
|
368 |
"step": 120
|
369 |
},
|
370 |
{
|
371 |
"epoch": 0.35,
|
372 |
-
"learning_rate":
|
373 |
-
"loss": 0.
|
374 |
"step": 122
|
375 |
},
|
376 |
{
|
377 |
"epoch": 0.35,
|
378 |
-
"learning_rate":
|
379 |
-
"loss": 0.
|
380 |
"step": 124
|
381 |
},
|
382 |
{
|
383 |
"epoch": 0.36,
|
384 |
-
"learning_rate":
|
385 |
-
"loss": 0.
|
386 |
"step": 126
|
387 |
},
|
388 |
{
|
389 |
"epoch": 0.36,
|
390 |
-
"learning_rate":
|
391 |
-
"loss": 0.
|
392 |
"step": 128
|
393 |
},
|
394 |
{
|
395 |
"epoch": 0.37,
|
396 |
-
"learning_rate":
|
397 |
-
"loss": 0.
|
398 |
"step": 130
|
399 |
},
|
400 |
{
|
401 |
"epoch": 0.38,
|
402 |
-
"learning_rate":
|
403 |
-
"loss": 0.
|
404 |
"step": 132
|
405 |
},
|
406 |
{
|
407 |
"epoch": 0.38,
|
408 |
-
"learning_rate":
|
409 |
-
"loss": 0.
|
410 |
"step": 134
|
411 |
},
|
412 |
{
|
413 |
"epoch": 0.39,
|
414 |
-
"learning_rate":
|
415 |
-
"loss": 0.
|
416 |
"step": 136
|
417 |
},
|
418 |
{
|
419 |
"epoch": 0.39,
|
420 |
-
"learning_rate":
|
421 |
-
"loss": 0.
|
422 |
"step": 138
|
423 |
},
|
424 |
{
|
425 |
"epoch": 0.4,
|
426 |
-
"learning_rate":
|
427 |
-
"loss": 0.
|
428 |
"step": 140
|
429 |
},
|
430 |
{
|
431 |
"epoch": 0.4,
|
432 |
-
"learning_rate":
|
433 |
-
"loss": 0.
|
434 |
"step": 142
|
435 |
},
|
436 |
{
|
437 |
"epoch": 0.41,
|
438 |
-
"learning_rate":
|
439 |
-
"loss": 0.
|
440 |
"step": 144
|
441 |
},
|
442 |
{
|
443 |
"epoch": 0.42,
|
444 |
-
"learning_rate":
|
445 |
-
"loss": 0.
|
446 |
"step": 146
|
447 |
},
|
448 |
{
|
449 |
"epoch": 0.42,
|
450 |
-
"learning_rate":
|
451 |
-
"loss": 0.
|
452 |
"step": 148
|
453 |
},
|
454 |
{
|
455 |
"epoch": 0.43,
|
456 |
-
"learning_rate":
|
457 |
-
"loss": 0.
|
458 |
"step": 150
|
459 |
},
|
460 |
{
|
461 |
"epoch": 0.43,
|
462 |
-
"learning_rate":
|
463 |
-
"loss": 0.
|
464 |
"step": 152
|
465 |
},
|
466 |
{
|
467 |
"epoch": 0.44,
|
468 |
-
"learning_rate":
|
469 |
-
"loss": 0.
|
470 |
"step": 154
|
471 |
},
|
472 |
{
|
473 |
"epoch": 0.44,
|
474 |
-
"learning_rate":
|
475 |
-
"loss": 0.
|
476 |
"step": 156
|
477 |
},
|
478 |
{
|
479 |
"epoch": 0.45,
|
480 |
-
"learning_rate":
|
481 |
-
"loss": 0.
|
482 |
"step": 158
|
483 |
},
|
484 |
{
|
485 |
"epoch": 0.46,
|
486 |
-
"learning_rate":
|
487 |
-
"loss": 0.
|
488 |
"step": 160
|
489 |
},
|
490 |
{
|
491 |
"epoch": 0.46,
|
492 |
-
"learning_rate":
|
493 |
-
"loss": 0.
|
494 |
"step": 162
|
495 |
},
|
496 |
{
|
497 |
"epoch": 0.47,
|
498 |
-
"learning_rate":
|
499 |
-
"loss": 0.
|
500 |
"step": 164
|
501 |
},
|
502 |
{
|
503 |
"epoch": 0.47,
|
504 |
-
"learning_rate":
|
505 |
-
"loss": 0.
|
506 |
"step": 166
|
507 |
},
|
508 |
{
|
509 |
"epoch": 0.48,
|
510 |
-
"learning_rate":
|
511 |
-
"loss": 0.
|
512 |
"step": 168
|
513 |
},
|
514 |
{
|
515 |
"epoch": 0.48,
|
516 |
-
"learning_rate":
|
517 |
-
"loss": 0.
|
518 |
"step": 170
|
519 |
},
|
520 |
{
|
521 |
"epoch": 0.49,
|
522 |
-
"learning_rate":
|
523 |
-
"loss": 0.
|
524 |
"step": 172
|
525 |
},
|
526 |
{
|
527 |
"epoch": 0.5,
|
528 |
-
"learning_rate":
|
529 |
-
"loss": 0.
|
530 |
"step": 174
|
531 |
},
|
532 |
{
|
533 |
"epoch": 0.5,
|
534 |
-
"learning_rate":
|
535 |
-
"loss": 0.
|
536 |
"step": 176
|
537 |
},
|
538 |
{
|
539 |
"epoch": 0.51,
|
540 |
-
"learning_rate":
|
541 |
-
"loss": 0.
|
542 |
"step": 178
|
543 |
},
|
544 |
{
|
545 |
"epoch": 0.51,
|
546 |
-
"learning_rate":
|
547 |
-
"loss": 0.
|
548 |
"step": 180
|
549 |
},
|
550 |
{
|
551 |
"epoch": 0.52,
|
552 |
-
"learning_rate":
|
553 |
-
"loss": 0.
|
554 |
"step": 182
|
555 |
},
|
556 |
{
|
557 |
"epoch": 0.52,
|
558 |
-
"learning_rate":
|
559 |
-
"loss": 0.
|
560 |
"step": 184
|
561 |
},
|
562 |
{
|
563 |
"epoch": 0.53,
|
564 |
-
"learning_rate":
|
565 |
-
"loss": 0.
|
566 |
"step": 186
|
567 |
},
|
568 |
{
|
569 |
"epoch": 0.54,
|
570 |
-
"learning_rate":
|
571 |
-
"loss": 0.
|
572 |
"step": 188
|
573 |
},
|
574 |
{
|
575 |
"epoch": 0.54,
|
576 |
-
"learning_rate":
|
577 |
-
"loss": 0.
|
578 |
"step": 190
|
579 |
},
|
580 |
{
|
581 |
"epoch": 0.55,
|
582 |
-
"learning_rate":
|
583 |
-
"loss": 0.
|
584 |
"step": 192
|
585 |
},
|
586 |
{
|
587 |
"epoch": 0.55,
|
588 |
-
"learning_rate":
|
589 |
-
"loss": 0.
|
590 |
"step": 194
|
591 |
},
|
592 |
{
|
593 |
"epoch": 0.56,
|
594 |
-
"learning_rate":
|
595 |
-
"loss": 0.
|
596 |
"step": 196
|
597 |
},
|
598 |
{
|
599 |
"epoch": 0.56,
|
600 |
-
"learning_rate":
|
601 |
-
"loss": 0.
|
602 |
"step": 198
|
603 |
},
|
604 |
{
|
605 |
"epoch": 0.57,
|
606 |
-
"learning_rate":
|
607 |
-
"loss": 0.
|
608 |
"step": 200
|
609 |
},
|
610 |
{
|
611 |
"epoch": 0.58,
|
612 |
-
"learning_rate":
|
613 |
-
"loss": 0.
|
614 |
"step": 202
|
615 |
},
|
616 |
{
|
617 |
"epoch": 0.58,
|
618 |
-
"learning_rate":
|
619 |
-
"loss": 0.
|
620 |
"step": 204
|
621 |
},
|
622 |
{
|
623 |
"epoch": 0.59,
|
624 |
-
"learning_rate":
|
625 |
-
"loss": 0.
|
626 |
"step": 206
|
627 |
},
|
628 |
{
|
629 |
"epoch": 0.59,
|
630 |
-
"learning_rate":
|
631 |
-
"loss": 0.
|
632 |
"step": 208
|
633 |
},
|
634 |
{
|
635 |
"epoch": 0.6,
|
636 |
-
"learning_rate":
|
637 |
-
"loss": 0.
|
638 |
"step": 210
|
639 |
},
|
640 |
{
|
641 |
"epoch": 0.6,
|
642 |
-
"learning_rate":
|
643 |
-
"loss": 0.
|
644 |
"step": 212
|
645 |
},
|
646 |
{
|
647 |
"epoch": 0.61,
|
648 |
-
"learning_rate":
|
649 |
-
"loss": 0.
|
650 |
"step": 214
|
651 |
},
|
652 |
{
|
653 |
"epoch": 0.62,
|
654 |
-
"learning_rate":
|
655 |
-
"loss": 0.
|
656 |
"step": 216
|
657 |
},
|
658 |
{
|
659 |
"epoch": 0.62,
|
660 |
-
"learning_rate":
|
661 |
-
"loss": 0.
|
662 |
"step": 218
|
663 |
},
|
664 |
{
|
665 |
"epoch": 0.63,
|
666 |
-
"learning_rate":
|
667 |
-
"loss": 0.
|
668 |
"step": 220
|
669 |
},
|
670 |
{
|
671 |
"epoch": 0.63,
|
672 |
-
"learning_rate":
|
673 |
-
"loss": 0.
|
674 |
"step": 222
|
675 |
},
|
676 |
{
|
677 |
"epoch": 0.64,
|
678 |
-
"learning_rate":
|
679 |
-
"loss": 0.
|
680 |
"step": 224
|
681 |
},
|
682 |
{
|
683 |
"epoch": 0.64,
|
684 |
-
"learning_rate":
|
685 |
-
"loss": 0.
|
686 |
"step": 226
|
687 |
},
|
688 |
{
|
689 |
"epoch": 0.65,
|
690 |
-
"learning_rate":
|
691 |
-
"loss": 0.
|
692 |
"step": 228
|
693 |
},
|
694 |
{
|
695 |
"epoch": 0.66,
|
696 |
-
"learning_rate":
|
697 |
-
"loss": 0.
|
698 |
"step": 230
|
699 |
},
|
700 |
{
|
701 |
"epoch": 0.66,
|
702 |
-
"learning_rate":
|
703 |
-
"loss": 0.
|
704 |
"step": 232
|
705 |
},
|
706 |
{
|
707 |
"epoch": 0.67,
|
708 |
-
"learning_rate":
|
709 |
-
"loss": 0.
|
710 |
"step": 234
|
711 |
},
|
712 |
{
|
713 |
"epoch": 0.67,
|
714 |
-
"learning_rate":
|
715 |
-
"loss": 0.
|
716 |
"step": 236
|
717 |
},
|
718 |
{
|
719 |
"epoch": 0.68,
|
720 |
-
"learning_rate":
|
721 |
-
"loss": 0.
|
722 |
"step": 238
|
723 |
},
|
724 |
{
|
725 |
"epoch": 0.68,
|
726 |
-
"learning_rate":
|
727 |
-
"loss": 0.
|
728 |
"step": 240
|
729 |
},
|
730 |
{
|
731 |
"epoch": 0.69,
|
732 |
-
"learning_rate":
|
733 |
-
"loss": 0.
|
734 |
"step": 242
|
735 |
},
|
736 |
{
|
737 |
"epoch": 0.7,
|
738 |
-
"learning_rate":
|
739 |
-
"loss": 0.
|
740 |
"step": 244
|
741 |
},
|
742 |
{
|
743 |
"epoch": 0.7,
|
744 |
-
"learning_rate":
|
745 |
-
"loss": 0.
|
746 |
"step": 246
|
747 |
},
|
748 |
{
|
749 |
"epoch": 0.71,
|
750 |
-
"learning_rate":
|
751 |
-
"loss": 0.
|
752 |
"step": 248
|
753 |
},
|
754 |
{
|
755 |
"epoch": 0.71,
|
756 |
-
"learning_rate":
|
757 |
-
"loss": 0.
|
758 |
"step": 250
|
759 |
},
|
760 |
{
|
761 |
"epoch": 0.72,
|
762 |
-
"learning_rate":
|
763 |
-
"loss": 0.
|
764 |
"step": 252
|
765 |
},
|
766 |
{
|
767 |
"epoch": 0.72,
|
768 |
-
"learning_rate":
|
769 |
-
"loss": 0.
|
770 |
"step": 254
|
771 |
},
|
772 |
{
|
773 |
"epoch": 0.73,
|
774 |
-
"learning_rate":
|
775 |
-
"loss": 0.
|
776 |
"step": 256
|
777 |
},
|
778 |
{
|
779 |
"epoch": 0.74,
|
780 |
-
"learning_rate":
|
781 |
-
"loss": 0.
|
782 |
"step": 258
|
783 |
},
|
784 |
{
|
785 |
"epoch": 0.74,
|
786 |
-
"learning_rate":
|
787 |
-
"loss": 0.
|
788 |
"step": 260
|
789 |
},
|
790 |
{
|
791 |
"epoch": 0.75,
|
792 |
-
"learning_rate":
|
793 |
-
"loss": 0.
|
794 |
"step": 262
|
795 |
},
|
796 |
{
|
797 |
"epoch": 0.75,
|
798 |
-
"learning_rate":
|
799 |
-
"loss": 0.
|
800 |
"step": 264
|
801 |
},
|
802 |
{
|
803 |
"epoch": 0.76,
|
804 |
-
"learning_rate":
|
805 |
-
"loss": 0.
|
806 |
"step": 266
|
807 |
},
|
808 |
{
|
809 |
"epoch": 0.76,
|
810 |
-
"learning_rate":
|
811 |
-
"loss": 0.
|
812 |
"step": 268
|
813 |
},
|
814 |
{
|
815 |
"epoch": 0.77,
|
816 |
-
"learning_rate":
|
817 |
-
"loss": 0.
|
818 |
"step": 270
|
819 |
},
|
820 |
{
|
821 |
"epoch": 0.77,
|
822 |
-
"learning_rate":
|
823 |
-
"loss": 0.
|
824 |
"step": 272
|
825 |
},
|
826 |
{
|
827 |
"epoch": 0.78,
|
828 |
-
"learning_rate":
|
829 |
-
"loss": 0.
|
830 |
"step": 274
|
831 |
},
|
832 |
{
|
833 |
"epoch": 0.79,
|
834 |
-
"learning_rate":
|
835 |
-
"loss": 0.
|
836 |
"step": 276
|
837 |
},
|
838 |
{
|
839 |
"epoch": 0.79,
|
840 |
-
"learning_rate":
|
841 |
-
"loss": 0.
|
842 |
"step": 278
|
843 |
},
|
844 |
{
|
845 |
"epoch": 0.8,
|
846 |
-
"learning_rate":
|
847 |
-
"loss": 0.
|
848 |
"step": 280
|
849 |
},
|
850 |
{
|
851 |
"epoch": 0.8,
|
852 |
-
"learning_rate":
|
853 |
-
"loss": 0.
|
854 |
"step": 282
|
855 |
},
|
856 |
{
|
857 |
"epoch": 0.81,
|
858 |
-
"learning_rate":
|
859 |
-
"loss": 0.
|
860 |
"step": 284
|
861 |
},
|
862 |
{
|
863 |
"epoch": 0.81,
|
864 |
-
"learning_rate":
|
865 |
-
"loss": 0.
|
866 |
"step": 286
|
867 |
},
|
868 |
{
|
869 |
"epoch": 0.82,
|
870 |
-
"learning_rate":
|
871 |
-
"loss": 0.
|
872 |
"step": 288
|
873 |
},
|
874 |
{
|
875 |
"epoch": 0.83,
|
876 |
-
"learning_rate":
|
877 |
-
"loss": 0.
|
878 |
"step": 290
|
879 |
},
|
880 |
{
|
881 |
"epoch": 0.83,
|
882 |
-
"learning_rate":
|
883 |
-
"loss": 0.
|
884 |
"step": 292
|
885 |
},
|
886 |
{
|
887 |
"epoch": 0.84,
|
888 |
-
"learning_rate":
|
889 |
-
"loss": 0.
|
890 |
"step": 294
|
891 |
},
|
892 |
{
|
893 |
"epoch": 0.84,
|
894 |
-
"learning_rate":
|
895 |
-
"loss": 0.
|
896 |
"step": 296
|
897 |
},
|
898 |
{
|
899 |
"epoch": 0.85,
|
900 |
-
"learning_rate":
|
901 |
-
"loss": 0.
|
902 |
"step": 298
|
903 |
},
|
904 |
{
|
905 |
"epoch": 0.85,
|
906 |
-
"learning_rate":
|
907 |
-
"loss": 0.
|
908 |
"step": 300
|
909 |
},
|
910 |
{
|
911 |
"epoch": 0.86,
|
912 |
-
"learning_rate":
|
913 |
-
"loss": 0.
|
914 |
"step": 302
|
915 |
},
|
916 |
{
|
917 |
"epoch": 0.87,
|
918 |
-
"learning_rate":
|
919 |
-
"loss": 0.
|
920 |
"step": 304
|
921 |
},
|
922 |
{
|
923 |
"epoch": 0.87,
|
924 |
-
"learning_rate":
|
925 |
-
"loss": 0.
|
926 |
"step": 306
|
927 |
},
|
928 |
{
|
929 |
"epoch": 0.88,
|
930 |
-
"learning_rate":
|
931 |
-
"loss": 0.
|
932 |
"step": 308
|
933 |
},
|
934 |
{
|
935 |
"epoch": 0.88,
|
936 |
-
"learning_rate":
|
937 |
-
"loss": 0.
|
938 |
"step": 310
|
939 |
},
|
940 |
{
|
941 |
"epoch": 0.89,
|
942 |
-
"learning_rate":
|
943 |
-
"loss": 0.
|
944 |
"step": 312
|
945 |
},
|
946 |
{
|
947 |
"epoch": 0.89,
|
948 |
-
"learning_rate":
|
949 |
-
"loss": 0.
|
950 |
"step": 314
|
951 |
},
|
952 |
{
|
953 |
"epoch": 0.9,
|
954 |
-
"learning_rate":
|
955 |
-
"loss": 0.
|
956 |
"step": 316
|
957 |
},
|
958 |
{
|
959 |
"epoch": 0.91,
|
960 |
-
"learning_rate":
|
961 |
-
"loss": 0.
|
962 |
"step": 318
|
963 |
},
|
964 |
{
|
965 |
"epoch": 0.91,
|
966 |
-
"learning_rate":
|
967 |
-
"loss": 0.
|
968 |
"step": 320
|
969 |
},
|
970 |
{
|
971 |
"epoch": 0.92,
|
972 |
-
"learning_rate":
|
973 |
-
"loss": 0.
|
974 |
"step": 322
|
975 |
},
|
976 |
{
|
977 |
"epoch": 0.92,
|
978 |
-
"learning_rate":
|
979 |
-
"loss": 0.
|
980 |
"step": 324
|
981 |
},
|
982 |
{
|
983 |
"epoch": 0.93,
|
984 |
-
"learning_rate":
|
985 |
-
"loss": 0.
|
986 |
"step": 326
|
987 |
},
|
988 |
{
|
989 |
"epoch": 0.93,
|
990 |
-
"learning_rate":
|
991 |
-
"loss": 0.
|
992 |
"step": 328
|
993 |
},
|
994 |
{
|
995 |
"epoch": 0.94,
|
996 |
-
"learning_rate":
|
997 |
-
"loss": 0.
|
998 |
"step": 330
|
999 |
},
|
1000 |
{
|
1001 |
"epoch": 0.95,
|
1002 |
-
"learning_rate":
|
1003 |
-
"loss": 0.
|
1004 |
"step": 332
|
1005 |
},
|
1006 |
{
|
1007 |
"epoch": 0.95,
|
1008 |
-
"learning_rate":
|
1009 |
-
"loss": 0.
|
1010 |
"step": 334
|
1011 |
},
|
1012 |
{
|
1013 |
"epoch": 0.96,
|
1014 |
-
"learning_rate":
|
1015 |
-
"loss": 0.
|
1016 |
"step": 336
|
1017 |
},
|
1018 |
{
|
1019 |
"epoch": 0.96,
|
1020 |
-
"learning_rate":
|
1021 |
-
"loss": 0.
|
1022 |
"step": 338
|
1023 |
},
|
1024 |
{
|
1025 |
"epoch": 0.97,
|
1026 |
-
"learning_rate":
|
1027 |
-
"loss": 0.
|
1028 |
"step": 340
|
1029 |
},
|
1030 |
{
|
1031 |
"epoch": 0.97,
|
1032 |
-
"learning_rate":
|
1033 |
-
"loss": 0.
|
1034 |
"step": 342
|
1035 |
},
|
1036 |
{
|
1037 |
"epoch": 0.98,
|
1038 |
-
"learning_rate":
|
1039 |
-
"loss": 0.
|
1040 |
"step": 344
|
1041 |
},
|
1042 |
{
|
1043 |
"epoch": 0.99,
|
1044 |
-
"learning_rate":
|
1045 |
-
"loss": 0.
|
1046 |
"step": 346
|
1047 |
},
|
1048 |
{
|
1049 |
"epoch": 0.99,
|
1050 |
-
"learning_rate":
|
1051 |
-
"loss": 0.
|
1052 |
"step": 348
|
1053 |
},
|
1054 |
{
|
1055 |
"epoch": 1.0,
|
1056 |
-
"learning_rate":
|
1057 |
-
"loss": 0.
|
1058 |
"step": 350
|
1059 |
-
},
|
1060 |
-
{
|
1061 |
-
"epoch": 1.0,
|
1062 |
-
"step": 351,
|
1063 |
-
"total_flos": 2.4611000956852634e+17,
|
1064 |
-
"train_loss": 0.11711755568994756,
|
1065 |
-
"train_runtime": 56238.1049,
|
1066 |
-
"train_samples_per_second": 3.195,
|
1067 |
-
"train_steps_per_second": 0.006
|
1068 |
}
|
1069 |
],
|
1070 |
"max_steps": 351,
|
1071 |
"num_train_epochs": 1,
|
1072 |
-
"total_flos": 2.
|
1073 |
"trial_name": null,
|
1074 |
"trial_params": null
|
1075 |
}
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9971509971509972,
|
5 |
+
"global_step": 350,
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.01,
|
12 |
+
"learning_rate": 2e-05,
|
13 |
+
"loss": 0.097,
|
14 |
"step": 2
|
15 |
},
|
16 |
{
|
17 |
"epoch": 0.01,
|
18 |
+
"learning_rate": 4e-05,
|
19 |
+
"loss": 0.1096,
|
20 |
"step": 4
|
21 |
},
|
22 |
{
|
23 |
"epoch": 0.02,
|
24 |
+
"learning_rate": 3.999672139632675e-05,
|
25 |
+
"loss": 0.098,
|
26 |
"step": 6
|
27 |
},
|
28 |
{
|
29 |
"epoch": 0.02,
|
30 |
+
"learning_rate": 3.9986886660231184e-05,
|
31 |
+
"loss": 0.0934,
|
32 |
"step": 8
|
33 |
},
|
34 |
{
|
35 |
"epoch": 0.03,
|
36 |
+
"learning_rate": 3.997049901613351e-05,
|
37 |
+
"loss": 0.1051,
|
38 |
"step": 10
|
39 |
},
|
40 |
{
|
41 |
"epoch": 0.03,
|
42 |
+
"learning_rate": 3.9947563836892725e-05,
|
43 |
+
"loss": 0.1093,
|
44 |
"step": 12
|
45 |
},
|
46 |
{
|
47 |
"epoch": 0.04,
|
48 |
+
"learning_rate": 3.9918088642045126e-05,
|
49 |
+
"loss": 0.1113,
|
50 |
"step": 14
|
51 |
},
|
52 |
{
|
53 |
"epoch": 0.05,
|
54 |
+
"learning_rate": 3.9882083095338934e-05,
|
55 |
+
"loss": 0.1097,
|
56 |
"step": 16
|
57 |
},
|
58 |
{
|
59 |
"epoch": 0.05,
|
60 |
+
"learning_rate": 3.98395590015659e-05,
|
61 |
+
"loss": 0.0988,
|
62 |
"step": 18
|
63 |
},
|
64 |
{
|
65 |
"epoch": 0.06,
|
66 |
+
"learning_rate": 3.979053030269103e-05,
|
67 |
+
"loss": 0.1046,
|
68 |
"step": 20
|
69 |
},
|
70 |
{
|
71 |
"epoch": 0.06,
|
72 |
+
"learning_rate": 3.9735013073281564e-05,
|
73 |
+
"loss": 0.102,
|
74 |
"step": 22
|
75 |
},
|
76 |
{
|
77 |
"epoch": 0.07,
|
78 |
+
"learning_rate": 3.967302551523671e-05,
|
79 |
+
"loss": 0.1029,
|
80 |
"step": 24
|
81 |
},
|
82 |
{
|
83 |
"epoch": 0.07,
|
84 |
+
"learning_rate": 3.960458795182003e-05,
|
85 |
+
"loss": 0.1102,
|
86 |
"step": 26
|
87 |
},
|
88 |
{
|
89 |
"epoch": 0.08,
|
90 |
+
"learning_rate": 3.95297228209962e-05,
|
91 |
+
"loss": 0.1021,
|
92 |
"step": 28
|
93 |
},
|
94 |
{
|
95 |
"epoch": 0.09,
|
96 |
+
"learning_rate": 3.944845466807451e-05,
|
97 |
+
"loss": 0.1015,
|
98 |
"step": 30
|
99 |
},
|
100 |
{
|
101 |
"epoch": 0.09,
|
102 |
+
"learning_rate": 3.936081013766143e-05,
|
103 |
+
"loss": 0.109,
|
104 |
"step": 32
|
105 |
},
|
106 |
{
|
107 |
"epoch": 0.1,
|
108 |
+
"learning_rate": 3.9266817964924905e-05,
|
109 |
+
"loss": 0.1131,
|
110 |
"step": 34
|
111 |
},
|
112 |
{
|
113 |
"epoch": 0.1,
|
114 |
+
"learning_rate": 3.91665089661732e-05,
|
115 |
+
"loss": 0.1019,
|
116 |
"step": 36
|
117 |
},
|
118 |
{
|
119 |
"epoch": 0.11,
|
120 |
+
"learning_rate": 3.9059916028751496e-05,
|
121 |
+
"loss": 0.1032,
|
122 |
"step": 38
|
123 |
},
|
124 |
{
|
125 |
"epoch": 0.11,
|
126 |
+
"learning_rate": 3.894707410025941e-05,
|
127 |
+
"loss": 0.104,
|
128 |
"step": 40
|
129 |
},
|
130 |
{
|
131 |
"epoch": 0.12,
|
132 |
+
"learning_rate": 3.882802017709307e-05,
|
133 |
+
"loss": 0.1015,
|
134 |
"step": 42
|
135 |
},
|
136 |
{
|
137 |
"epoch": 0.13,
|
138 |
+
"learning_rate": 3.870279329231546e-05,
|
139 |
+
"loss": 0.106,
|
140 |
"step": 44
|
141 |
},
|
142 |
{
|
143 |
"epoch": 0.13,
|
144 |
+
"learning_rate": 3.857143450285901e-05,
|
145 |
+
"loss": 0.0968,
|
146 |
"step": 46
|
147 |
},
|
148 |
{
|
149 |
"epoch": 0.14,
|
150 |
+
"learning_rate": 3.84339868760647e-05,
|
151 |
+
"loss": 0.0982,
|
152 |
"step": 48
|
153 |
},
|
154 |
{
|
155 |
"epoch": 0.14,
|
156 |
+
"learning_rate": 3.829049547556193e-05,
|
157 |
+
"loss": 0.1069,
|
158 |
"step": 50
|
159 |
},
|
160 |
{
|
161 |
"epoch": 0.15,
|
162 |
+
"learning_rate": 3.8141007346493964e-05,
|
163 |
+
"loss": 0.1048,
|
164 |
"step": 52
|
165 |
},
|
166 |
{
|
167 |
"epoch": 0.15,
|
168 |
+
"learning_rate": 3.798557150009373e-05,
|
169 |
+
"loss": 0.1054,
|
170 |
"step": 54
|
171 |
},
|
172 |
{
|
173 |
"epoch": 0.16,
|
174 |
+
"learning_rate": 3.782423889761492e-05,
|
175 |
+
"loss": 0.1146,
|
176 |
"step": 56
|
177 |
},
|
178 |
{
|
179 |
"epoch": 0.17,
|
180 |
+
"learning_rate": 3.7657062433623825e-05,
|
181 |
+
"loss": 0.1015,
|
182 |
"step": 58
|
183 |
},
|
184 |
{
|
185 |
"epoch": 0.17,
|
186 |
+
"learning_rate": 3.748409691865737e-05,
|
187 |
+
"loss": 0.0976,
|
188 |
"step": 60
|
189 |
},
|
190 |
{
|
191 |
"epoch": 0.18,
|
192 |
+
"learning_rate": 3.7305399061252795e-05,
|
193 |
+
"loss": 0.1108,
|
194 |
"step": 62
|
195 |
},
|
196 |
{
|
197 |
"epoch": 0.18,
|
198 |
+
"learning_rate": 3.712102744935529e-05,
|
199 |
+
"loss": 0.1041,
|
200 |
"step": 64
|
201 |
},
|
202 |
{
|
203 |
"epoch": 0.19,
|
204 |
+
"learning_rate": 3.6931042531109246e-05,
|
205 |
+
"loss": 0.1061,
|
206 |
"step": 66
|
207 |
},
|
208 |
{
|
209 |
"epoch": 0.19,
|
210 |
+
"learning_rate": 3.673550659503975e-05,
|
211 |
+
"loss": 0.0952,
|
212 |
"step": 68
|
213 |
},
|
214 |
{
|
215 |
"epoch": 0.2,
|
216 |
+
"learning_rate": 3.6534483749630624e-05,
|
217 |
+
"loss": 0.1023,
|
218 |
"step": 70
|
219 |
},
|
220 |
{
|
221 |
"epoch": 0.21,
|
222 |
+
"learning_rate": 3.6328039902305806e-05,
|
223 |
+
"loss": 0.0961,
|
224 |
"step": 72
|
225 |
},
|
226 |
{
|
227 |
"epoch": 0.21,
|
228 |
+
"learning_rate": 3.611624273782092e-05,
|
229 |
+
"loss": 0.0971,
|
230 |
"step": 74
|
231 |
},
|
232 |
{
|
233 |
"epoch": 0.22,
|
234 |
+
"learning_rate": 3.589916169607209e-05,
|
235 |
+
"loss": 0.1019,
|
236 |
"step": 76
|
237 |
},
|
238 |
{
|
239 |
"epoch": 0.22,
|
240 |
+
"learning_rate": 3.567686794932943e-05,
|
241 |
+
"loss": 0.1016,
|
242 |
"step": 78
|
243 |
},
|
244 |
{
|
245 |
"epoch": 0.23,
|
246 |
+
"learning_rate": 3.544943437890238e-05,
|
247 |
+
"loss": 0.1057,
|
248 |
"step": 80
|
249 |
},
|
250 |
{
|
251 |
"epoch": 0.23,
|
252 |
+
"learning_rate": 3.5216935551244896e-05,
|
253 |
+
"loss": 0.104,
|
254 |
"step": 82
|
255 |
},
|
256 |
{
|
257 |
"epoch": 0.24,
|
258 |
+
"learning_rate": 3.4979447693508e-05,
|
259 |
+
"loss": 0.103,
|
260 |
"step": 84
|
261 |
},
|
262 |
{
|
263 |
"epoch": 0.25,
|
264 |
+
"learning_rate": 3.4737048668547995e-05,
|
265 |
+
"loss": 0.1039,
|
266 |
"step": 86
|
267 |
},
|
268 |
{
|
269 |
"epoch": 0.25,
|
270 |
+
"learning_rate": 3.4489817949398224e-05,
|
271 |
+
"loss": 0.0955,
|
272 |
"step": 88
|
273 |
},
|
274 |
{
|
275 |
"epoch": 0.26,
|
276 |
+
"learning_rate": 3.423783659321307e-05,
|
277 |
+
"loss": 0.1059,
|
278 |
"step": 90
|
279 |
},
|
280 |
{
|
281 |
"epoch": 0.26,
|
282 |
+
"learning_rate": 3.398118721469255e-05,
|
283 |
+
"loss": 0.1028,
|
284 |
"step": 92
|
285 |
},
|
286 |
{
|
287 |
"epoch": 0.27,
|
288 |
+
"learning_rate": 3.371995395899618e-05,
|
289 |
+
"loss": 0.1056,
|
290 |
"step": 94
|
291 |
},
|
292 |
{
|
293 |
"epoch": 0.27,
|
294 |
+
"learning_rate": 3.345422247415512e-05,
|
295 |
+
"loss": 0.0985,
|
296 |
"step": 96
|
297 |
},
|
298 |
{
|
299 |
"epoch": 0.28,
|
300 |
+
"learning_rate": 3.3184079882991606e-05,
|
301 |
+
"loss": 0.106,
|
302 |
"step": 98
|
303 |
},
|
304 |
{
|
305 |
"epoch": 0.28,
|
306 |
+
"learning_rate": 3.29096147545548e-05,
|
307 |
+
"loss": 0.0983,
|
308 |
"step": 100
|
309 |
},
|
310 |
{
|
311 |
"epoch": 0.29,
|
312 |
+
"learning_rate": 3.2630917075082545e-05,
|
313 |
+
"loss": 0.0979,
|
314 |
"step": 102
|
315 |
},
|
316 |
{
|
317 |
"epoch": 0.3,
|
318 |
+
"learning_rate": 3.234807821849838e-05,
|
319 |
+
"loss": 0.0987,
|
320 |
"step": 104
|
321 |
},
|
322 |
{
|
323 |
"epoch": 0.3,
|
324 |
+
"learning_rate": 3.2061190916453745e-05,
|
325 |
+
"loss": 0.1096,
|
326 |
"step": 106
|
327 |
},
|
328 |
{
|
329 |
"epoch": 0.31,
|
330 |
+
"learning_rate": 3.1770349227924854e-05,
|
331 |
+
"loss": 0.11,
|
332 |
"step": 108
|
333 |
},
|
334 |
{
|
335 |
"epoch": 0.31,
|
336 |
+
"learning_rate": 3.147564850837455e-05,
|
337 |
+
"loss": 0.1004,
|
338 |
"step": 110
|
339 |
},
|
340 |
{
|
341 |
"epoch": 0.32,
|
342 |
+
"learning_rate": 3.1177185378488984e-05,
|
343 |
+
"loss": 0.0939,
|
344 |
"step": 112
|
345 |
},
|
346 |
{
|
347 |
"epoch": 0.32,
|
348 |
+
"learning_rate": 3.0875057692499566e-05,
|
349 |
+
"loss": 0.0944,
|
350 |
"step": 114
|
351 |
},
|
352 |
{
|
353 |
"epoch": 0.33,
|
354 |
+
"learning_rate": 3.05693645061004e-05,
|
355 |
+
"loss": 0.1117,
|
356 |
"step": 116
|
357 |
},
|
358 |
{
|
359 |
"epoch": 0.34,
|
360 |
+
"learning_rate": 3.0260206043971857e-05,
|
361 |
+
"loss": 0.0962,
|
362 |
"step": 118
|
363 |
},
|
364 |
{
|
365 |
"epoch": 0.34,
|
366 |
+
"learning_rate": 2.9947683666920913e-05,
|
367 |
+
"loss": 0.0993,
|
368 |
"step": 120
|
369 |
},
|
370 |
{
|
371 |
"epoch": 0.35,
|
372 |
+
"learning_rate": 2.9631899838648887e-05,
|
373 |
+
"loss": 0.0946,
|
374 |
"step": 122
|
375 |
},
|
376 |
{
|
377 |
"epoch": 0.35,
|
378 |
+
"learning_rate": 2.9312958092157724e-05,
|
379 |
+
"loss": 0.1003,
|
380 |
"step": 124
|
381 |
},
|
382 |
{
|
383 |
"epoch": 0.36,
|
384 |
+
"learning_rate": 2.8990962995805577e-05,
|
385 |
+
"loss": 0.1009,
|
386 |
"step": 126
|
387 |
},
|
388 |
{
|
389 |
"epoch": 0.36,
|
390 |
+
"learning_rate": 2.866602011902301e-05,
|
391 |
+
"loss": 0.0913,
|
392 |
"step": 128
|
393 |
},
|
394 |
{
|
395 |
"epoch": 0.37,
|
396 |
+
"learning_rate": 2.833823599770098e-05,
|
397 |
+
"loss": 0.0961,
|
398 |
"step": 130
|
399 |
},
|
400 |
{
|
401 |
"epoch": 0.38,
|
402 |
+
"learning_rate": 2.8007718099261886e-05,
|
403 |
+
"loss": 0.1042,
|
404 |
"step": 132
|
405 |
},
|
406 |
{
|
407 |
"epoch": 0.38,
|
408 |
+
"learning_rate": 2.767457478742533e-05,
|
409 |
+
"loss": 0.1049,
|
410 |
"step": 134
|
411 |
},
|
412 |
{
|
413 |
"epoch": 0.39,
|
414 |
+
"learning_rate": 2.733891528667991e-05,
|
415 |
+
"loss": 0.1063,
|
416 |
"step": 136
|
417 |
},
|
418 |
{
|
419 |
"epoch": 0.39,
|
420 |
+
"learning_rate": 2.7000849646472826e-05,
|
421 |
+
"loss": 0.1028,
|
422 |
"step": 138
|
423 |
},
|
424 |
{
|
425 |
"epoch": 0.4,
|
426 |
+
"learning_rate": 2.6660488705129054e-05,
|
427 |
+
"loss": 0.0973,
|
428 |
"step": 140
|
429 |
},
|
430 |
{
|
431 |
"epoch": 0.4,
|
432 |
+
"learning_rate": 2.6317944053511853e-05,
|
433 |
+
"loss": 0.1022,
|
434 |
"step": 142
|
435 |
},
|
436 |
{
|
437 |
"epoch": 0.41,
|
438 |
+
"learning_rate": 2.5973327998436527e-05,
|
439 |
+
"loss": 0.1044,
|
440 |
"step": 144
|
441 |
},
|
442 |
{
|
443 |
"epoch": 0.42,
|
444 |
+
"learning_rate": 2.562675352584947e-05,
|
445 |
+
"loss": 0.104,
|
446 |
"step": 146
|
447 |
},
|
448 |
{
|
449 |
"epoch": 0.42,
|
450 |
+
"learning_rate": 2.5278334263784587e-05,
|
451 |
+
"loss": 0.1015,
|
452 |
"step": 148
|
453 |
},
|
454 |
{
|
455 |
"epoch": 0.43,
|
456 |
+
"learning_rate": 2.4928184445109108e-05,
|
457 |
+
"loss": 0.1026,
|
458 |
"step": 150
|
459 |
},
|
460 |
{
|
461 |
"epoch": 0.43,
|
462 |
+
"learning_rate": 2.457641887007121e-05,
|
463 |
+
"loss": 0.1108,
|
464 |
"step": 152
|
465 |
},
|
466 |
{
|
467 |
"epoch": 0.44,
|
468 |
+
"learning_rate": 2.4223152868661535e-05,
|
469 |
+
"loss": 0.104,
|
470 |
"step": 154
|
471 |
},
|
472 |
{
|
473 |
"epoch": 0.44,
|
474 |
+
"learning_rate": 2.3868502262801065e-05,
|
475 |
+
"loss": 0.1013,
|
476 |
"step": 156
|
477 |
},
|
478 |
{
|
479 |
"epoch": 0.45,
|
480 |
+
"learning_rate": 2.3512583328367717e-05,
|
481 |
+
"loss": 0.1004,
|
482 |
"step": 158
|
483 |
},
|
484 |
{
|
485 |
"epoch": 0.46,
|
486 |
+
"learning_rate": 2.3155512757074065e-05,
|
487 |
+
"loss": 0.0986,
|
488 |
"step": 160
|
489 |
},
|
490 |
{
|
491 |
"epoch": 0.46,
|
492 |
+
"learning_rate": 2.2797407618208784e-05,
|
493 |
+
"loss": 0.0986,
|
494 |
"step": 162
|
495 |
},
|
496 |
{
|
497 |
"epoch": 0.47,
|
498 |
+
"learning_rate": 2.2438385320254234e-05,
|
499 |
+
"loss": 0.1106,
|
500 |
"step": 164
|
501 |
},
|
502 |
{
|
503 |
"epoch": 0.47,
|
504 |
+
"learning_rate": 2.2078563572392907e-05,
|
505 |
+
"loss": 0.097,
|
506 |
"step": 166
|
507 |
},
|
508 |
{
|
509 |
"epoch": 0.48,
|
510 |
+
"learning_rate": 2.171806034591522e-05,
|
511 |
+
"loss": 0.0981,
|
512 |
"step": 168
|
513 |
},
|
514 |
{
|
515 |
"epoch": 0.48,
|
516 |
+
"learning_rate": 2.135699383554144e-05,
|
517 |
+
"loss": 0.1088,
|
518 |
"step": 170
|
519 |
},
|
520 |
{
|
521 |
"epoch": 0.49,
|
522 |
+
"learning_rate": 2.099548242067028e-05,
|
523 |
+
"loss": 0.0911,
|
524 |
"step": 172
|
525 |
},
|
526 |
{
|
527 |
"epoch": 0.5,
|
528 |
+
"learning_rate": 2.0633644626567007e-05,
|
529 |
+
"loss": 0.0978,
|
530 |
"step": 174
|
531 |
},
|
532 |
{
|
533 |
"epoch": 0.5,
|
534 |
+
"learning_rate": 2.0271599085503722e-05,
|
535 |
+
"loss": 0.0912,
|
536 |
"step": 176
|
537 |
},
|
538 |
{
|
539 |
"epoch": 0.51,
|
540 |
+
"learning_rate": 1.9909464497864487e-05,
|
541 |
+
"loss": 0.107,
|
542 |
"step": 178
|
543 |
},
|
544 |
{
|
545 |
"epoch": 0.51,
|
546 |
+
"learning_rate": 1.954735959322825e-05,
|
547 |
+
"loss": 0.1027,
|
548 |
"step": 180
|
549 |
},
|
550 |
{
|
551 |
"epoch": 0.52,
|
552 |
+
"learning_rate": 1.9185403091442044e-05,
|
553 |
+
"loss": 0.1048,
|
554 |
"step": 182
|
555 |
},
|
556 |
{
|
557 |
"epoch": 0.52,
|
558 |
+
"learning_rate": 1.882371366369749e-05,
|
559 |
+
"loss": 0.0915,
|
560 |
"step": 184
|
561 |
},
|
562 |
{
|
563 |
"epoch": 0.53,
|
564 |
+
"learning_rate": 1.846240989362325e-05,
|
565 |
+
"loss": 0.1041,
|
566 |
"step": 186
|
567 |
},
|
568 |
{
|
569 |
"epoch": 0.54,
|
570 |
+
"learning_rate": 1.810161023840607e-05,
|
571 |
+
"loss": 0.1001,
|
572 |
"step": 188
|
573 |
},
|
574 |
{
|
575 |
"epoch": 0.54,
|
576 |
+
"learning_rate": 1.774143298995346e-05,
|
577 |
+
"loss": 0.1043,
|
578 |
"step": 190
|
579 |
},
|
580 |
{
|
581 |
"epoch": 0.55,
|
582 |
+
"learning_rate": 1.7381996236110386e-05,
|
583 |
+
"loss": 0.1067,
|
584 |
"step": 192
|
585 |
},
|
586 |
{
|
587 |
"epoch": 0.55,
|
588 |
+
"learning_rate": 1.702341782194301e-05,
|
589 |
+
"loss": 0.1095,
|
590 |
"step": 194
|
591 |
},
|
592 |
{
|
593 |
"epoch": 0.56,
|
594 |
+
"learning_rate": 1.6665815311101896e-05,
|
595 |
+
"loss": 0.1016,
|
596 |
"step": 196
|
597 |
},
|
598 |
{
|
599 |
"epoch": 0.56,
|
600 |
+
"learning_rate": 1.630930594727762e-05,
|
601 |
+
"loss": 0.0963,
|
602 |
"step": 198
|
603 |
},
|
604 |
{
|
605 |
"epoch": 0.57,
|
606 |
+
"learning_rate": 1.5954006615761158e-05,
|
607 |
+
"loss": 0.1036,
|
608 |
"step": 200
|
609 |
},
|
610 |
{
|
611 |
"epoch": 0.58,
|
612 |
+
"learning_rate": 1.560003380512185e-05,
|
613 |
+
"loss": 0.1136,
|
614 |
"step": 202
|
615 |
},
|
616 |
{
|
617 |
"epoch": 0.58,
|
618 |
+
"learning_rate": 1.5247503569015413e-05,
|
619 |
+
"loss": 0.0947,
|
620 |
"step": 204
|
621 |
},
|
622 |
{
|
623 |
"epoch": 0.59,
|
624 |
+
"learning_rate": 1.489653148813455e-05,
|
625 |
+
"loss": 0.1105,
|
626 |
"step": 206
|
627 |
},
|
628 |
{
|
629 |
"epoch": 0.59,
|
630 |
+
"learning_rate": 1.4547232632314624e-05,
|
631 |
+
"loss": 0.1033,
|
632 |
"step": 208
|
633 |
},
|
634 |
{
|
635 |
"epoch": 0.6,
|
636 |
+
"learning_rate": 1.4199721522806807e-05,
|
637 |
+
"loss": 0.102,
|
638 |
"step": 210
|
639 |
},
|
640 |
{
|
641 |
"epoch": 0.6,
|
642 |
+
"learning_rate": 1.3854112094731116e-05,
|
643 |
+
"loss": 0.1037,
|
644 |
"step": 212
|
645 |
},
|
646 |
{
|
647 |
"epoch": 0.61,
|
648 |
+
"learning_rate": 1.3510517659721583e-05,
|
649 |
+
"loss": 0.1005,
|
650 |
"step": 214
|
651 |
},
|
652 |
{
|
653 |
"epoch": 0.62,
|
654 |
+
"learning_rate": 1.316905086877589e-05,
|
655 |
+
"loss": 0.0979,
|
656 |
"step": 216
|
657 |
},
|
658 |
{
|
659 |
"epoch": 0.62,
|
660 |
+
"learning_rate": 1.2829823675321535e-05,
|
661 |
+
"loss": 0.1007,
|
662 |
"step": 218
|
663 |
},
|
664 |
{
|
665 |
"epoch": 0.63,
|
666 |
+
"learning_rate": 1.2492947298510783e-05,
|
667 |
+
"loss": 0.1002,
|
668 |
"step": 220
|
669 |
},
|
670 |
{
|
671 |
"epoch": 0.63,
|
672 |
+
"learning_rate": 1.2158532186756275e-05,
|
673 |
+
"loss": 0.1037,
|
674 |
"step": 222
|
675 |
},
|
676 |
{
|
677 |
"epoch": 0.64,
|
678 |
+
"learning_rate": 1.182668798151939e-05,
|
679 |
+
"loss": 0.1018,
|
680 |
"step": 224
|
681 |
},
|
682 |
{
|
683 |
"epoch": 0.64,
|
684 |
+
"learning_rate": 1.1497523481363146e-05,
|
685 |
+
"loss": 0.1002,
|
686 |
"step": 226
|
687 |
},
|
688 |
{
|
689 |
"epoch": 0.65,
|
690 |
+
"learning_rate": 1.1171146606281482e-05,
|
691 |
+
"loss": 0.0982,
|
692 |
"step": 228
|
693 |
},
|
694 |
{
|
695 |
"epoch": 0.66,
|
696 |
+
"learning_rate": 1.0847664362316549e-05,
|
697 |
+
"loss": 0.102,
|
698 |
"step": 230
|
699 |
},
|
700 |
{
|
701 |
"epoch": 0.66,
|
702 |
+
"learning_rate": 1.0527182806475662e-05,
|
703 |
+
"loss": 0.0928,
|
704 |
"step": 232
|
705 |
},
|
706 |
{
|
707 |
"epoch": 0.67,
|
708 |
+
"learning_rate": 1.020980701195946e-05,
|
709 |
+
"loss": 0.0996,
|
710 |
"step": 234
|
711 |
},
|
712 |
{
|
713 |
"epoch": 0.67,
|
714 |
+
"learning_rate": 9.895641033712507e-06,
|
715 |
+
"loss": 0.1014,
|
716 |
"step": 236
|
717 |
},
|
718 |
{
|
719 |
"epoch": 0.68,
|
720 |
+
"learning_rate": 9.584787874307828e-06,
|
721 |
+
"loss": 0.0994,
|
722 |
"step": 238
|
723 |
},
|
724 |
{
|
725 |
"epoch": 0.68,
|
726 |
+
"learning_rate": 9.277349450176445e-06,
|
727 |
+
"loss": 0.1092,
|
728 |
"step": 240
|
729 |
},
|
730 |
{
|
731 |
"epoch": 0.69,
|
732 |
+
"learning_rate": 8.97342655819303e-06,
|
733 |
+
"loss": 0.0992,
|
734 |
"step": 242
|
735 |
},
|
736 |
{
|
737 |
"epoch": 0.7,
|
738 |
+
"learning_rate": 8.673118842628595e-06,
|
739 |
+
"loss": 0.0892,
|
740 |
"step": 244
|
741 |
},
|
742 |
{
|
743 |
"epoch": 0.7,
|
744 |
+
"learning_rate": 8.376524762481069e-06,
|
745 |
+
"loss": 0.0975,
|
746 |
"step": 246
|
747 |
},
|
748 |
{
|
749 |
"epoch": 0.71,
|
750 |
+
"learning_rate": 8.083741559194515e-06,
|
751 |
+
"loss": 0.0982,
|
752 |
"step": 248
|
753 |
},
|
754 |
{
|
755 |
"epoch": 0.71,
|
756 |
+
"learning_rate": 7.794865224777504e-06,
|
757 |
+
"loss": 0.1026,
|
758 |
"step": 250
|
759 |
},
|
760 |
{
|
761 |
"epoch": 0.72,
|
762 |
+
"learning_rate": 7.509990470331159e-06,
|
763 |
+
"loss": 0.0973,
|
764 |
"step": 252
|
765 |
},
|
766 |
{
|
767 |
"epoch": 0.72,
|
768 |
+
"learning_rate": 7.229210694997113e-06,
|
769 |
+
"loss": 0.0985,
|
770 |
"step": 254
|
771 |
},
|
772 |
{
|
773 |
"epoch": 0.73,
|
774 |
+
"learning_rate": 6.952617955335641e-06,
|
775 |
+
"loss": 0.1005,
|
776 |
"step": 256
|
777 |
},
|
778 |
{
|
779 |
"epoch": 0.74,
|
780 |
+
"learning_rate": 6.680302935143963e-06,
|
781 |
+
"loss": 0.0968,
|
782 |
"step": 258
|
783 |
},
|
784 |
{
|
785 |
"epoch": 0.74,
|
786 |
+
"learning_rate": 6.412354915724642e-06,
|
787 |
+
"loss": 0.1079,
|
788 |
"step": 260
|
789 |
},
|
790 |
{
|
791 |
"epoch": 0.75,
|
792 |
+
"learning_rate": 6.14886174661373e-06,
|
793 |
+
"loss": 0.0994,
|
794 |
"step": 262
|
795 |
},
|
796 |
{
|
797 |
"epoch": 0.75,
|
798 |
+
"learning_rate": 5.889909816778458e-06,
|
799 |
+
"loss": 0.0991,
|
800 |
"step": 264
|
801 |
},
|
802 |
{
|
803 |
"epoch": 0.76,
|
804 |
+
"learning_rate": 5.635584026293655e-06,
|
805 |
+
"loss": 0.098,
|
806 |
"step": 266
|
807 |
},
|
808 |
{
|
809 |
"epoch": 0.76,
|
810 |
+
"learning_rate": 5.385967758506407e-06,
|
811 |
+
"loss": 0.1035,
|
812 |
"step": 268
|
813 |
},
|
814 |
{
|
815 |
"epoch": 0.77,
|
816 |
+
"learning_rate": 5.141142852697956e-06,
|
817 |
+
"loss": 0.1022,
|
818 |
"step": 270
|
819 |
},
|
820 |
{
|
821 |
"epoch": 0.77,
|
822 |
+
"learning_rate": 4.901189577251864e-06,
|
823 |
+
"loss": 0.0938,
|
824 |
"step": 272
|
825 |
},
|
826 |
{
|
827 |
"epoch": 0.78,
|
828 |
+
"learning_rate": 4.6661866033371506e-06,
|
829 |
+
"loss": 0.1026,
|
830 |
"step": 274
|
831 |
},
|
832 |
{
|
833 |
"epoch": 0.79,
|
834 |
+
"learning_rate": 4.4362109791151695e-06,
|
835 |
+
"loss": 0.0983,
|
836 |
"step": 276
|
837 |
},
|
838 |
{
|
839 |
"epoch": 0.79,
|
840 |
+
"learning_rate": 4.211338104478548e-06,
|
841 |
+
"loss": 0.1036,
|
842 |
"step": 278
|
843 |
},
|
844 |
{
|
845 |
"epoch": 0.8,
|
846 |
+
"learning_rate": 3.991641706330575e-06,
|
847 |
+
"loss": 0.092,
|
848 |
"step": 280
|
849 |
},
|
850 |
{
|
851 |
"epoch": 0.8,
|
852 |
+
"learning_rate": 3.777193814413045e-06,
|
853 |
+
"loss": 0.1038,
|
854 |
"step": 282
|
855 |
},
|
856 |
{
|
857 |
"epoch": 0.81,
|
858 |
+
"learning_rate": 3.5680647376905666e-06,
|
859 |
+
"loss": 0.1,
|
860 |
"step": 284
|
861 |
},
|
862 |
{
|
863 |
"epoch": 0.81,
|
864 |
+
"learning_rate": 3.3643230412990625e-06,
|
865 |
+
"loss": 0.1053,
|
866 |
"step": 286
|
867 |
},
|
868 |
{
|
869 |
"epoch": 0.82,
|
870 |
+
"learning_rate": 3.1660355240659423e-06,
|
871 |
+
"loss": 0.1029,
|
872 |
"step": 288
|
873 |
},
|
874 |
{
|
875 |
"epoch": 0.83,
|
876 |
+
"learning_rate": 2.973267196609453e-06,
|
877 |
+
"loss": 0.0974,
|
878 |
"step": 290
|
879 |
},
|
880 |
{
|
881 |
"epoch": 0.83,
|
882 |
+
"learning_rate": 2.786081260024236e-06,
|
883 |
+
"loss": 0.0966,
|
884 |
"step": 292
|
885 |
},
|
886 |
{
|
887 |
"epoch": 0.84,
|
888 |
+
"learning_rate": 2.604539085160218e-06,
|
889 |
+
"loss": 0.1029,
|
890 |
"step": 294
|
891 |
},
|
892 |
{
|
893 |
"epoch": 0.84,
|
894 |
+
"learning_rate": 2.428700192501534e-06,
|
895 |
+
"loss": 0.1031,
|
896 |
"step": 296
|
897 |
},
|
898 |
{
|
899 |
"epoch": 0.85,
|
900 |
+
"learning_rate": 2.2586222326521277e-06,
|
901 |
+
"loss": 0.1017,
|
902 |
"step": 298
|
903 |
},
|
904 |
{
|
905 |
"epoch": 0.85,
|
906 |
+
"learning_rate": 2.0943609674343833e-06,
|
907 |
+
"loss": 0.1021,
|
908 |
"step": 300
|
909 |
},
|
910 |
{
|
911 |
"epoch": 0.86,
|
912 |
+
"learning_rate": 1.9359702516070553e-06,
|
913 |
+
"loss": 0.103,
|
914 |
"step": 302
|
915 |
},
|
916 |
{
|
917 |
"epoch": 0.87,
|
918 |
+
"learning_rate": 1.7835020152084116e-06,
|
919 |
+
"loss": 0.1023,
|
920 |
"step": 304
|
921 |
},
|
922 |
{
|
923 |
"epoch": 0.87,
|
924 |
+
"learning_rate": 1.6370062465304503e-06,
|
925 |
+
"loss": 0.1034,
|
926 |
"step": 306
|
927 |
},
|
928 |
{
|
929 |
"epoch": 0.88,
|
930 |
+
"learning_rate": 1.496530975729693e-06,
|
931 |
+
"loss": 0.0926,
|
932 |
"step": 308
|
933 |
},
|
934 |
{
|
935 |
"epoch": 0.88,
|
936 |
+
"learning_rate": 1.3621222590800342e-06,
|
937 |
+
"loss": 0.099,
|
938 |
"step": 310
|
939 |
},
|
940 |
{
|
941 |
"epoch": 0.89,
|
942 |
+
"learning_rate": 1.2338241638726811e-06,
|
943 |
+
"loss": 0.0985,
|
944 |
"step": 312
|
945 |
},
|
946 |
{
|
947 |
"epoch": 0.89,
|
948 |
+
"learning_rate": 1.1116787539682571e-06,
|
949 |
+
"loss": 0.1044,
|
950 |
"step": 314
|
951 |
},
|
952 |
{
|
953 |
"epoch": 0.9,
|
954 |
+
"learning_rate": 9.957260760057164e-07,
|
955 |
+
"loss": 0.0929,
|
956 |
"step": 316
|
957 |
},
|
958 |
{
|
959 |
"epoch": 0.91,
|
960 |
+
"learning_rate": 8.860041462726543e-07,
|
961 |
+
"loss": 0.0988,
|
962 |
"step": 318
|
963 |
},
|
964 |
{
|
965 |
"epoch": 0.91,
|
966 |
+
"learning_rate": 7.825489382412521e-07,
|
967 |
+
"loss": 0.1043,
|
968 |
"step": 320
|
969 |
},
|
970 |
{
|
971 |
"epoch": 0.92,
|
972 |
+
"learning_rate": 6.853943707740218e-07,
|
973 |
+
"loss": 0.0975,
|
974 |
"step": 322
|
975 |
},
|
976 |
{
|
977 |
"epoch": 0.92,
|
978 |
+
"learning_rate": 5.945722970031332e-07,
|
979 |
+
"loss": 0.1065,
|
980 |
"step": 324
|
981 |
},
|
982 |
{
|
983 |
"epoch": 0.93,
|
984 |
+
"learning_rate": 5.101124938870605e-07,
|
985 |
+
"loss": 0.0978,
|
986 |
"step": 326
|
987 |
},
|
988 |
{
|
989 |
"epoch": 0.93,
|
990 |
+
"learning_rate": 4.320426524478749e-07,
|
991 |
+
"loss": 0.1,
|
992 |
"step": 328
|
993 |
},
|
994 |
{
|
995 |
"epoch": 0.94,
|
996 |
+
"learning_rate": 3.603883686924681e-07,
|
997 |
+
"loss": 0.0967,
|
998 |
"step": 330
|
999 |
},
|
1000 |
{
|
1001 |
"epoch": 0.95,
|
1002 |
+
"learning_rate": 2.951731352206322e-07,
|
1003 |
+
"loss": 0.0954,
|
1004 |
"step": 332
|
1005 |
},
|
1006 |
{
|
1007 |
"epoch": 0.95,
|
1008 |
+
"learning_rate": 2.3641833352276768e-07,
|
1009 |
+
"loss": 0.1016,
|
1010 |
"step": 334
|
1011 |
},
|
1012 |
{
|
1013 |
"epoch": 0.96,
|
1014 |
+
"learning_rate": 1.841432269697463e-07,
|
1015 |
+
"loss": 0.0993,
|
1016 |
"step": 336
|
1017 |
},
|
1018 |
{
|
1019 |
"epoch": 0.96,
|
1020 |
+
"learning_rate": 1.3836495449719878e-07,
|
1021 |
+
"loss": 0.1002,
|
1022 |
"step": 338
|
1023 |
},
|
1024 |
{
|
1025 |
"epoch": 0.97,
|
1026 |
+
"learning_rate": 9.90985249863563e-08,
|
1027 |
+
"loss": 0.1043,
|
1028 |
"step": 340
|
1029 |
},
|
1030 |
{
|
1031 |
"epoch": 0.97,
|
1032 |
+
"learning_rate": 6.635681234321789e-08,
|
1033 |
+
"loss": 0.0984,
|
1034 |
"step": 342
|
1035 |
},
|
1036 |
{
|
1037 |
"epoch": 0.98,
|
1038 |
+
"learning_rate": 4.0150551277724494e-08,
|
1039 |
+
"loss": 0.1046,
|
1040 |
"step": 344
|
1041 |
},
|
1042 |
{
|
1043 |
"epoch": 0.99,
|
1044 |
+
"learning_rate": 2.0488333784249858e-08,
|
1045 |
+
"loss": 0.0948,
|
1046 |
"step": 346
|
1047 |
},
|
1048 |
{
|
1049 |
"epoch": 0.99,
|
1050 |
+
"learning_rate": 7.376606324644986e-09,
|
1051 |
+
"loss": 0.0897,
|
1052 |
"step": 348
|
1053 |
},
|
1054 |
{
|
1055 |
"epoch": 1.0,
|
1056 |
+
"learning_rate": 8.196677146932175e-10,
|
1057 |
+
"loss": 0.0971,
|
1058 |
"step": 350
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1059 |
}
|
1060 |
],
|
1061 |
"max_steps": 351,
|
1062 |
"num_train_epochs": 1,
|
1063 |
+
"total_flos": 2.454170351173632e+17,
|
1064 |
"trial_name": null,
|
1065 |
"trial_params": null
|
1066 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:773009bb9ae9edbbd62a95f7459bff6131e643ef55e6dc91013d04842d7343bb
|
3 |
+
size 4847
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|