File size: 2,656 Bytes
0e240e8 43084d3 a15c740 0e240e8 cec1ace 0e240e8 a9c73f1 b70491f e7062c3 231d6af f1f4c8e 231d6af 0e240e8 cec1ace 0e240e8 0ae5e55 a15c740 0e240e8 7d2e4fa 0e240e8 1ea8600 0e240e8 0ae5e55 0e240e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: other
tags:
- generated_from_trainer
- stable diffusion
- diffusion
- text2image
- prompt augment
- prompt engineering
datasets:
- Gustavosta/Stable-Diffusion-Prompts
model-index:
- name: opt-350m-magicprompt-SD
results: []
widget:
- text: "morning sun over Jakarta"
example_title: "morning sun"
- text: "WARNING: pip is"
example_title: "pip"
- text: "sentient cheese"
example_title: "sentient cheese"
- text: "cheeps are"
example_title: "cheeps"
- text: "avocado armchair"
example_title: "creative prompt"
- text: "Landscape of"
example_title: "landscape"
parameters:
min_length: 16
max_length: 96
no_repeat_ngram_size: 1
do_sample: True
---
# opt-350m-magicprompt-SD
Generate/augment your prompt, stable diffusion style.
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the Gustavosta/Stable-Diffusion-Prompts dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2987
- eval_steps_per_second = 16.623
- perplexity = 3.6644
## example
![jakarta](https://i.imgur.com/TP3HQOA.png)
output (_on DALL-E 2, but as words are words, works anywhere_)
![dalle2-jakarta](https://i.ibb.co/BKVxwmJ/DALL-E-2022-11-09-12-37-56-morning-sun-over-Jakarta-by-Simon-St-lenhag-and-Gaston-Bussiere-Matte-pai.png)
## Training and evaluation data
refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8568 | 0.95 | 16 | 2.5937 |
| 2.2487 | 1.95 | 32 | 2.1050 |
| 1.9011 | 2.95 | 48 | 1.8082 |
| 1.6837 | 3.95 | 64 | 1.6178 |
| 1.4887 | 4.95 | 80 | 1.4897 |
| 1.3812 | 5.95 | 96 | 1.4017 |
| 1.2944 | 6.95 | 112 | 1.3437 |
| 1.2574 | 7.95 | 128 | 1.3127 |
| 1.2325 | 8.95 | 144 | 1.3009 |
| 1.2223 | 9.95 | 160 | 1.2987 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1
|