pszemraj's picture
update model card README.md
3a5a162
|
raw
history blame
3.06 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - matthews_correlation
model-index:
  - name: paraphrase-MiniLM-L12-v2-CoLA
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: cola
          split: validation
          args: cola
        metrics:
          - name: Matthews Correlation
            type: matthews_correlation
            value: 0.49464326454019025

paraphrase-MiniLM-L12-v2-CoLA

This model is a fine-tuned version of sentence-transformers/paraphrase-MiniLM-L12-v2 on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9375
  • Matthews Correlation: 0.4946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 30198
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 16.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Matthews Correlation
0.5747 1.0 67 0.5394 0.3455
0.5025 2.0 134 0.4999 0.4270
0.3698 3.0 201 0.4636 0.5057
0.2969 4.0 268 0.5309 0.4751
0.2275 5.0 335 0.6238 0.4775
0.1859 6.0 402 0.6315 0.4867
0.1517 7.0 469 0.7783 0.4695
0.1016 8.0 536 0.6762 0.4901
0.1017 9.0 603 0.7412 0.5046
0.0898 10.0 670 0.7719 0.4877
0.0527 11.0 737 0.8627 0.4955
0.0582 12.0 804 0.8986 0.4738
0.074 13.0 871 0.9469 0.4942
0.0508 14.0 938 0.9436 0.4918
0.024 15.0 1005 0.9391 0.4919
0.0458 16.0 1072 0.9375 0.4946

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.1