|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- matthews_correlation |
|
model-index: |
|
- name: paraphrase-MiniLM-L12-v2-CoLA |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: glue |
|
type: glue |
|
config: cola |
|
split: validation |
|
args: cola |
|
metrics: |
|
- name: Matthews Correlation |
|
type: matthews_correlation |
|
value: 0.49464326454019025 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# paraphrase-MiniLM-L12-v2-CoLA |
|
|
|
This model is a fine-tuned version of [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) on the glue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9375 |
|
- Matthews Correlation: 0.4946 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 16 |
|
- seed: 30198 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 16.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------:| |
|
| 0.5747 | 1.0 | 67 | 0.5394 | 0.3455 | |
|
| 0.5025 | 2.0 | 134 | 0.4999 | 0.4270 | |
|
| 0.3698 | 3.0 | 201 | 0.4636 | 0.5057 | |
|
| 0.2969 | 4.0 | 268 | 0.5309 | 0.4751 | |
|
| 0.2275 | 5.0 | 335 | 0.6238 | 0.4775 | |
|
| 0.1859 | 6.0 | 402 | 0.6315 | 0.4867 | |
|
| 0.1517 | 7.0 | 469 | 0.7783 | 0.4695 | |
|
| 0.1016 | 8.0 | 536 | 0.6762 | 0.4901 | |
|
| 0.1017 | 9.0 | 603 | 0.7412 | 0.5046 | |
|
| 0.0898 | 10.0 | 670 | 0.7719 | 0.4877 | |
|
| 0.0527 | 11.0 | 737 | 0.8627 | 0.4955 | |
|
| 0.0582 | 12.0 | 804 | 0.8986 | 0.4738 | |
|
| 0.074 | 13.0 | 871 | 0.9469 | 0.4942 | |
|
| 0.0508 | 14.0 | 938 | 0.9436 | 0.4918 | |
|
| 0.024 | 15.0 | 1005 | 0.9391 | 0.4919 | |
|
| 0.0458 | 16.0 | 1072 | 0.9375 | 0.4946 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.1 |
|
|