update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- glue
|
7 |
+
metrics:
|
8 |
+
- matthews_correlation
|
9 |
+
model-index:
|
10 |
+
- name: paraphrase-MiniLM-L12-v2-CoLA
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: glue
|
17 |
+
type: glue
|
18 |
+
config: cola
|
19 |
+
split: validation
|
20 |
+
args: cola
|
21 |
+
metrics:
|
22 |
+
- name: Matthews Correlation
|
23 |
+
type: matthews_correlation
|
24 |
+
value: 0.49464326454019025
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# paraphrase-MiniLM-L12-v2-CoLA
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [sentence-transformers/paraphrase-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L12-v2) on the glue dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.9375
|
35 |
+
- Matthews Correlation: 0.4946
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 8e-05
|
55 |
+
- train_batch_size: 64
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 30198
|
58 |
+
- distributed_type: multi-GPU
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: cosine
|
63 |
+
- lr_scheduler_warmup_ratio: 0.03
|
64 |
+
- num_epochs: 16.0
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
|
71 |
+
| 0.5747 | 1.0 | 67 | 0.5394 | 0.3455 |
|
72 |
+
| 0.5025 | 2.0 | 134 | 0.4999 | 0.4270 |
|
73 |
+
| 0.3698 | 3.0 | 201 | 0.4636 | 0.5057 |
|
74 |
+
| 0.2969 | 4.0 | 268 | 0.5309 | 0.4751 |
|
75 |
+
| 0.2275 | 5.0 | 335 | 0.6238 | 0.4775 |
|
76 |
+
| 0.1859 | 6.0 | 402 | 0.6315 | 0.4867 |
|
77 |
+
| 0.1517 | 7.0 | 469 | 0.7783 | 0.4695 |
|
78 |
+
| 0.1016 | 8.0 | 536 | 0.6762 | 0.4901 |
|
79 |
+
| 0.1017 | 9.0 | 603 | 0.7412 | 0.5046 |
|
80 |
+
| 0.0898 | 10.0 | 670 | 0.7719 | 0.4877 |
|
81 |
+
| 0.0527 | 11.0 | 737 | 0.8627 | 0.4955 |
|
82 |
+
| 0.0582 | 12.0 | 804 | 0.8986 | 0.4738 |
|
83 |
+
| 0.074 | 13.0 | 871 | 0.9469 | 0.4942 |
|
84 |
+
| 0.0508 | 14.0 | 938 | 0.9436 | 0.4918 |
|
85 |
+
| 0.024 | 15.0 | 1005 | 0.9391 | 0.4919 |
|
86 |
+
| 0.0458 | 16.0 | 1072 | 0.9375 | 0.4946 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.27.0.dev0
|
92 |
+
- Pytorch 1.13.1+cu117
|
93 |
+
- Datasets 2.8.0
|
94 |
+
- Tokenizers 0.13.1
|