pszemraj commited on
Commit
b83d551
·
1 Parent(s): d9abd93

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -7
README.md CHANGED
@@ -2,6 +2,9 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
 
5
  datasets:
6
  - pszemraj/HC3-textgen-qa
7
  metrics:
@@ -9,11 +12,12 @@ metrics:
9
  inference: False
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
  # pythia-6.9b-deduped for general QA
16
 
 
 
 
 
17
  This model is a fine-tuned version of [EleutherAI/pythia-6.9b-deduped](https://huggingface.co/EleutherAI/pythia-6.9b-deduped) on the pszemraj/HC3-textgen-qa dataset.
18
  It achieves the following results on the evaluation set:
19
  - Loss: 1.2372
@@ -42,16 +46,17 @@ tokenizer = AutoTokenizer.from_pretrained("pszemraj/pythia-6.9b-HC3")
42
 
43
  model = AutoModelForCausalLM.from_pretrained(
44
  "pszemraj/pythia-6.9b-HC3", load_in_8bit=True, device_map="auto"
45
- ) # shards are ~4GB each
46
 
47
  prompt = "I was wondering how much wood a woodchuck could chuck? <answer>"
48
  inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
49
  outputs = model.generate(**inputs, max_new_tokens=300) # default generation config (+ 300 tokens)
50
- result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
 
51
 
52
  import pprint as pp
53
 
54
- pp.pprint(result[0])
55
  ```
56
 
57
  The defautl `GenerationConfig` uses contrastive search with `top_k=4` and `penalty_alpha=0.6`. For more information on inference and parameters to use, see [the transformers docs](https://huggingface.co/docs/transformers/generation_strategies#decoding-strategies).
@@ -59,7 +64,7 @@ The defautl `GenerationConfig` uses contrastive search with `top_k=4` and `penal
59
  ## Intended uses & limitations
60
 
61
  - **Intended use:** research/exploration into comparing RLHF tuning vs. "guided"/specific tuning on "quality" datasets/responses of _"what the human would want as answer anyway"_
62
- - This is not trained/fine-tuned with RLHF and therefore will not be as helpful/generalizable/safe as chatGPT.
63
 
64
  ## Training and evaluation data
65
 
@@ -81,6 +86,8 @@ model-index:
81
 
82
  ## Training procedure
83
 
 
 
84
  ### Training results
85
 
86
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
+ - HC3
6
+ - chatGPT
7
+ - assistant
8
  datasets:
9
  - pszemraj/HC3-textgen-qa
10
  metrics:
 
12
  inference: False
13
  ---
14
 
 
 
 
15
  # pythia-6.9b-deduped for general QA
16
 
17
+ <a href="https://colab.research.google.com/gist/pszemraj/351f04fc2afb6346c763885f127284ef/pythia-6-9b-deduped-for-general-qa.ipynb">
18
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
19
+ </a>
20
+
21
  This model is a fine-tuned version of [EleutherAI/pythia-6.9b-deduped](https://huggingface.co/EleutherAI/pythia-6.9b-deduped) on the pszemraj/HC3-textgen-qa dataset.
22
  It achieves the following results on the evaluation set:
23
  - Loss: 1.2372
 
46
 
47
  model = AutoModelForCausalLM.from_pretrained(
48
  "pszemraj/pythia-6.9b-HC3", load_in_8bit=True, device_map="auto"
49
+ ) # shards are ~4GB each, there are eight total
50
 
51
  prompt = "I was wondering how much wood a woodchuck could chuck? <answer>"
52
  inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
53
  outputs = model.generate(**inputs, max_new_tokens=300) # default generation config (+ 300 tokens)
54
+ result = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
55
+ result = result.split("<end_answer>")[0].strip()
56
 
57
  import pprint as pp
58
 
59
+ pp.pprint(result)
60
  ```
61
 
62
  The defautl `GenerationConfig` uses contrastive search with `top_k=4` and `penalty_alpha=0.6`. For more information on inference and parameters to use, see [the transformers docs](https://huggingface.co/docs/transformers/generation_strategies#decoding-strategies).
 
64
  ## Intended uses & limitations
65
 
66
  - **Intended use:** research/exploration into comparing RLHF tuning vs. "guided"/specific tuning on "quality" datasets/responses of _"what the human would want as answer anyway"_
67
+ - This is **not** trained/fine-tuned with RLHF and therefore will not be as helpful/generalizable/safe as chatGPT.
68
 
69
  ## Training and evaluation data
70
 
 
86
 
87
  ## Training procedure
88
 
89
+ Two epochs on the `pszemraj/HC3-textgen-qa` dataset.
90
+
91
  ### Training results
92
 
93
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |