File size: 2,241 Bytes
e2a67c5
 
 
ea8ada4
 
 
855064a
 
e2a67c5
 
 
eaaf07c
 
 
 
 
 
 
 
 
96159fc
 
 
 
 
e2a67c5
 
 
 
 
0913696
 
 
855064a
e2a67c5
 
699aafa
e2a67c5
 
 
eaaf07c
e2a67c5
 
 
0913696
e2a67c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
tags:
- generated_from_trainer
- stable diffusion
- beautiful
- masterpiece
datasets:
- Gustavosta/Stable-Diffusion-Prompts
model-index:
- name: tiny-gpt2-magicprompt
  results: []
widget:
 - text: "morning sun over Jakarta"
   example_title: "morning sun"
 - text: "WARNING: pip is"
   example_title: "pip"
 - text: "sentient cheese"
   example_title: "sentient cheese"
 - text: "cheeps are"
   example_title: "cheeps"
parameters:
  min_length: 32
  max_length: 64
  no_repeat_ngram_size: 1
  do_sample: True
---


# tiny-gpt2-magicprompt


~~Generate/augment your prompt, stable diffusion style.~~ Enter a new dimension of creativity

This model is a fine-tuned version of [sshleifer/tiny-gpt2](https://huggingface.co/sshleifer/tiny-gpt2) on the Gustavosta/Stable-Diffusion-Prompts dataset.
It achieves the following results on the evaluation set:
- Loss: 10.7918
- perplexity: 48618.8756

## Intended uses & limitations

???

## Training and evaluation data

refer to the `Gustavosta/Stable-Diffusion-Prompts` dataset.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 10.8201       | 0.96  | 16   | 10.8191         |
| 10.8167       | 1.96  | 32   | 10.8145         |
| 10.8117       | 2.96  | 48   | 10.8095         |
| 10.8058       | 3.96  | 64   | 10.8025         |
| 10.7997       | 4.96  | 80   | 10.7989         |
| 10.7959       | 5.96  | 96   | 10.7947         |
| 10.7934       | 6.96  | 112  | 10.7925         |
| 10.7924       | 7.96  | 128  | 10.7919         |
| 10.7921       | 8.96  | 144  | 10.7918         |
| 10.792        | 9.96  | 160  | 10.7918         |


### Framework versions

- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1