--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: xtremedistil-l12-h384-uncased-CoLA results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5395539646127814 widget: - text: 'The cat sat on the mat.' example_title: Correct grammatical sentence - text: 'Me and my friend going to the store.' example_title: Incorrect subject-verb agreement - text: 'I ain''t got no money.' example_title: Incorrect verb conjugation and double negative - text: 'She don''t like pizza no more.' example_title: Incorrect verb conjugation and double negative - text: 'They is arriving tomorrow.' example_title: Incorrect verb conjugation --- # xtremedistil-l12-h384-uncased-CoLA This model is a fine-tuned version of [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.4974 - Matthews Correlation: 0.5396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 16 - seed: 5559 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 16.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4822 | 1.0 | 67 | 0.5893 | 0.2621 | | 0.4669 | 2.0 | 134 | 0.5811 | 0.3722 | | 0.3077 | 3.0 | 201 | 0.6150 | 0.4383 | | 0.2594 | 4.0 | 268 | 0.4974 | 0.5396 | | 0.21 | 5.0 | 335 | 0.5594 | 0.5182 | | 0.1526 | 6.0 | 402 | 0.5715 | 0.5150 | | 0.1775 | 7.0 | 469 | 0.6637 | 0.5020 | | 0.1681 | 8.0 | 536 | 0.6958 | 0.5131 | | 0.124 | 9.0 | 603 | 0.7057 | 0.5154 | | 0.1111 | 10.0 | 670 | 0.8173 | 0.5074 | | 0.1332 | 11.0 | 737 | 0.8253 | 0.5260 | | 0.0673 | 12.0 | 804 | 0.8086 | 0.5180 | | 0.0512 | 13.0 | 871 | 0.8409 | 0.5128 | | 0.0457 | 14.0 | 938 | 0.8760 | 0.4947 | | 0.04 | 15.0 | 1005 | 0.8522 | 0.5103 | | 0.0485 | 16.0 | 1072 | 0.8556 | 0.5076 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.1