--- license: mit base_model: microsoft/xtremedistil-l12-h384-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: xtremedistil-l12-h384-uncased-zeroshot-v1.1-none results: [] --- # xtremedistil-l12-h384-uncased-zeroshot-v1.1-none This model is a fine-tuned version of [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2063 - F1 Macro: 0.5570 - F1 Micro: 0.6385 - Accuracy Balanced: 0.6104 - Accuracy: 0.6385 - Precision Macro: 0.5705 - Recall Macro: 0.6104 - Precision Micro: 0.6385 - Recall Micro: 0.6385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 80085 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.04 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.2756 | 0.32 | 5000 | 0.4155 | 0.8146 | 0.8255 | 0.8215 | 0.8255 | 0.8101 | 0.8215 | 0.8255 | 0.8255 | | 0.2395 | 0.65 | 10000 | 0.4166 | 0.8182 | 0.8303 | 0.8222 | 0.8303 | 0.8151 | 0.8222 | 0.8303 | 0.8303 | | 0.2464 | 0.97 | 15000 | 0.4114 | 0.8204 | 0.8325 | 0.8239 | 0.8325 | 0.8175 | 0.8239 | 0.8325 | 0.8325 | | 0.2105 | 1.3 | 20000 | 0.4051 | 0.8236 | 0.8363 | 0.8254 | 0.8363 | 0.8219 | 0.8254 | 0.8363 | 0.8363 | | 0.2267 | 1.62 | 25000 | 0.4030 | 0.8244 | 0.8373 | 0.8257 | 0.8373 | 0.8231 | 0.8257 | 0.8373 | 0.8373 | | 0.2312 | 1.95 | 30000 | 0.4088 | 0.8233 | 0.836 | 0.8250 | 0.836 | 0.8217 | 0.8250 | 0.836 | 0.836 | | 0.2241 | 2.27 | 35000 | 0.4061 | 0.8257 | 0.8375 | 0.8291 | 0.8375 | 0.8229 | 0.8291 | 0.8375 | 0.8375 | | 0.2183 | 2.6 | 40000 | 0.4043 | 0.8259 | 0.838 | 0.8285 | 0.838 | 0.8235 | 0.8285 | 0.838 | 0.838 | | 0.2285 | 2.92 | 45000 | 0.4041 | 0.8241 | 0.8365 | 0.8263 | 0.8365 | 0.8220 | 0.8263 | 0.8365 | 0.8365 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0