Upload files
Browse files- .gitattributes +0 -1
- README.md +34 -3
- config.json +34 -0
- pytorch_model.bin +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,34 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: afl-3.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
library_name: transformers
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
---
|
10 |
+
|
11 |
+
## Model description
|
12 |
+
This model is a fine-tuned version of the [bert-base-uncased](https://huggingface.co/transformers/model_doc/bert.html) model to classify toxic comments.
|
13 |
+
|
14 |
+
## How to use
|
15 |
+
|
16 |
+
You can use the model with the following code.
|
17 |
+
|
18 |
+
```python
|
19 |
+
from transformers import BertForSequenceClassification, BertTokenizer, TextClassificationPipeline
|
20 |
+
|
21 |
+
model_path = "JungleLee/bert-toxic-comment-classification"
|
22 |
+
tokenizer = BertTokenizer.from_pretrained(model_path)
|
23 |
+
model = BertForSequenceClassification.from_pretrained(model_path, num_labels=2)
|
24 |
+
|
25 |
+
pipeline = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
26 |
+
print(pipeline("You're a fucking nerd."))
|
27 |
+
```
|
28 |
+
|
29 |
+
## Training data
|
30 |
+
The training data comes from this [Kaggle competition](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data). We use 90% of the `train.csv` data to train the model.
|
31 |
+
|
32 |
+
## Evaluation results
|
33 |
+
|
34 |
+
The model achieves 0.95 AUC in a 1500 rows held-out test set.
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "JungleLee/bert-toxic-comment-classification",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"problem_type": "single_label_classification",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522,
|
26 |
+
"id2label": {
|
27 |
+
"0": "non-toxic",
|
28 |
+
"1": "toxic"
|
29 |
+
},
|
30 |
+
"label2id": {
|
31 |
+
"non-toxic": 0,
|
32 |
+
"toxic": 1
|
33 |
+
}
|
34 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924aff2eb02a6562097e6b09c543b010175abef67534e342baf501428977cc73
|
3 |
+
size 438019245
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "model_max_length": 256, "do_lower_case": true}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|