Add files
Browse files- .gitattributes +1 -0
- README.md +256 -0
- models/aydao-anime-danbooru2019s-512-5268480.pt +3 -0
- orig/aydao-anime-danbooru2019s-512-5268480.pkl +3 -0
.gitattributes
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
2 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
3 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TADNE models
|
2 |
+
|
3 |
+
- aydao-anime-danbooru2019s-512-5268480.pkl
|
4 |
+
- https://drive.google.com/file/d/1A-E_E32WAtTHRlOzjhhYhyyBDXLJN9_H
|
5 |
+
|
6 |
+
## Model Conversion
|
7 |
+
|
8 |
+
The model in the `models` directory is converted with the following repo:
|
9 |
+
https://github.com/rosinality/stylegan2-pytorch
|
10 |
+
|
11 |
+
### Apply patches
|
12 |
+
```diff
|
13 |
+
--- a/model.py
|
14 |
+
+++ b/model.py
|
15 |
+
@@ -395,6 +395,7 @@ class Generator(nn.Module):
|
16 |
+
style_dim,
|
17 |
+
n_mlp,
|
18 |
+
channel_multiplier=2,
|
19 |
+
+ additional_multiplier=2,
|
20 |
+
blur_kernel=[1, 3, 3, 1],
|
21 |
+
lr_mlp=0.01,
|
22 |
+
):
|
23 |
+
@@ -426,6 +427,9 @@ class Generator(nn.Module):
|
24 |
+
512: 32 * channel_multiplier,
|
25 |
+
1024: 16 * channel_multiplier,
|
26 |
+
}
|
27 |
+
+ if additional_multiplier > 1:
|
28 |
+
+ for k in list(self.channels.keys()):
|
29 |
+
+ self.channels[k] *= additional_multiplier
|
30 |
+
|
31 |
+
self.input = ConstantInput(self.channels[4])
|
32 |
+
self.conv1 = StyledConv(
|
33 |
+
@@ -518,7 +522,7 @@ class Generator(nn.Module):
|
34 |
+
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
35 |
+
]
|
36 |
+
|
37 |
+
- if truncation < 1:
|
38 |
+
+ if truncation_latent is not None:
|
39 |
+
style_t = []
|
40 |
+
|
41 |
+
for style in styles:
|
42 |
+
```
|
43 |
+
|
44 |
+
```diff
|
45 |
+
--- a/convert_weight.py
|
46 |
+
+++ b/convert_weight.py
|
47 |
+
@@ -221,6 +221,7 @@ if __name__ == "__main__":
|
48 |
+
default=2,
|
49 |
+
help="channel multiplier factor. config-f = 2, else = 1",
|
50 |
+
)
|
51 |
+
+ parser.add_argument("--additional_multiplier", type=int, default=2)
|
52 |
+
parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights")
|
53 |
+
|
54 |
+
args = parser.parse_args()
|
55 |
+
@@ -243,7 +244,8 @@ if __name__ == "__main__":
|
56 |
+
if layer[0].startswith('Dense'):
|
57 |
+
n_mlp += 1
|
58 |
+
|
59 |
+
- g = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier)
|
60 |
+
+ style_dim = 512 * args.additional_multiplier
|
61 |
+
+ g = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier)
|
62 |
+
state_dict = g.state_dict()
|
63 |
+
state_dict = fill_statedict(state_dict, g_ema.vars, size, n_mlp)
|
64 |
+
|
65 |
+
@@ -254,7 +256,7 @@ if __name__ == "__main__":
|
66 |
+
ckpt = {"g_ema": state_dict, "latent_avg": latent_avg}
|
67 |
+
|
68 |
+
if args.gen:
|
69 |
+
- g_train = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier)
|
70 |
+
+ g_train = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier)
|
71 |
+
g_train_state = g_train.state_dict()
|
72 |
+
g_train_state = fill_statedict(g_train_state, generator.vars, size, n_mlp)
|
73 |
+
ckpt["g"] = g_train_state
|
74 |
+
@@ -271,9 +273,12 @@ if __name__ == "__main__":
|
75 |
+
batch_size = {256: 16, 512: 9, 1024: 4}
|
76 |
+
n_sample = batch_size.get(size, 25)
|
77 |
+
|
78 |
+
+ if args.additional_multiplier > 1:
|
79 |
+
+ n_sample = 2
|
80 |
+
+
|
81 |
+
g = g.to(device)
|
82 |
+
|
83 |
+
- z = np.random.RandomState(0).randn(n_sample, 512).astype("float32")
|
84 |
+
+ z = np.random.RandomState(0).randn(n_sample, style_dim).astype("float32")
|
85 |
+
|
86 |
+
with torch.no_grad():
|
87 |
+
img_pt, _ = g(
|
88 |
+
```
|
89 |
+
|
90 |
+
### Build Docker image
|
91 |
+
|
92 |
+
```dockerfile
|
93 |
+
FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04
|
94 |
+
|
95 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
96 |
+
RUN apt-get update -y && \
|
97 |
+
apt-get install -y --no-install-recommends \
|
98 |
+
git \
|
99 |
+
ninja-build \
|
100 |
+
# pyenv dependencies \
|
101 |
+
make \
|
102 |
+
build-essential \
|
103 |
+
libssl-dev \
|
104 |
+
zlib1g-dev \
|
105 |
+
libbz2-dev \
|
106 |
+
libreadline-dev \
|
107 |
+
libsqlite3-dev \
|
108 |
+
wget \
|
109 |
+
curl \
|
110 |
+
llvm \
|
111 |
+
libncursesw5-dev \
|
112 |
+
xz-utils \
|
113 |
+
tk-dev \
|
114 |
+
libxml2-dev \
|
115 |
+
libxmlsec1-dev \
|
116 |
+
libffi-dev \
|
117 |
+
liblzma-dev && \
|
118 |
+
apt-get clean && \
|
119 |
+
rm -rf /var/lib/apt/lists/*
|
120 |
+
|
121 |
+
ARG PYTHON_VERSION=3.7.12
|
122 |
+
ENV PYENV_ROOT /opt/pyenv
|
123 |
+
ENV PATH ${PYENV_ROOT}/shims:${PYENV_ROOT}/bin:${PATH}
|
124 |
+
RUN curl https://pyenv.run | bash
|
125 |
+
RUN pyenv install ${PYTHON_VERSION} && \
|
126 |
+
pyenv global ${PYTHON_VERSION}
|
127 |
+
RUN pip install --no-cache-dir -U requests tqdm opencv-python-headless
|
128 |
+
RUN pip install --no-cache-dir -U tensorflow-gpu==1.15.4
|
129 |
+
RUN pip install --no-cache-dir -U torch==1.10.2+cu102 torchvision==0.11.3+cu102 -f https://download.pytorch.org/whl/torch/ -f https://download.pytorch.org/whl/torchvision/
|
130 |
+
RUN rm -rf ${HOME}/.cache/pip
|
131 |
+
|
132 |
+
WORKDIR /work
|
133 |
+
ENV PYTHONPATH /work/:${PYTHONPATH}
|
134 |
+
```
|
135 |
+
|
136 |
+
```bash
|
137 |
+
docker build . -t stylegan2_pytorch
|
138 |
+
```
|
139 |
+
|
140 |
+
### Convert
|
141 |
+
```bash
|
142 |
+
git clone https://github.com/NVLabs/stylegan2
|
143 |
+
docker run --rm -it -u $(id -u):$(id -g) -e XDG_CACHE_HOME=/work --ipc host --gpus all -w /work -v `pwd`:/work stylegan2_pytorch python convert_weight.py --repo stylegan2 aydao-anime-danbooru2019s-512-5268480.pkl
|
144 |
+
```
|
145 |
+
|
146 |
+
## Usage
|
147 |
+
### Apply patch
|
148 |
+
```diff
|
149 |
+
--- a/generate.py
|
150 |
+
+++ b/generate.py
|
151 |
+
@@ -6,21 +6,25 @@ from model import Generator
|
152 |
+
from tqdm import tqdm
|
153 |
+
|
154 |
+
|
155 |
+
-def generate(args, g_ema, device, mean_latent):
|
156 |
+
+def generate(args, g_ema, device, mean_latent, randomize_noise):
|
157 |
+
|
158 |
+
with torch.no_grad():
|
159 |
+
g_ema.eval()
|
160 |
+
for i in tqdm(range(args.pics)):
|
161 |
+
- sample_z = torch.randn(args.sample, args.latent, device=device)
|
162 |
+
+ samples = []
|
163 |
+
+ for _ in range(args.split):
|
164 |
+
+ sample_z = torch.randn(args.sample // args.split, args.latent, device=device)
|
165 |
+
|
166 |
+
- sample, _ = g_ema(
|
167 |
+
- [sample_z], truncation=args.truncation, truncation_latent=mean_latent
|
168 |
+
- )
|
169 |
+
+ sample, _ = g_ema(
|
170 |
+
+ [sample_z], truncation=args.truncation, truncation_latent=mean_latent,
|
171 |
+
+ randomize_noise=randomize_noise
|
172 |
+
+ )
|
173 |
+
+ samples.extend(sample)
|
174 |
+
|
175 |
+
utils.save_image(
|
176 |
+
- sample,
|
177 |
+
- f"sample/{str(i).zfill(6)}.png",
|
178 |
+
- nrow=1,
|
179 |
+
+ samples,
|
180 |
+
+ f"{args.output_dir}/{str(i).zfill(6)}.{args.ext}",
|
181 |
+
+ nrow=args.ncol,
|
182 |
+
normalize=True,
|
183 |
+
range=(-1, 1),
|
184 |
+
)
|
185 |
+
@@ -30,6 +34,8 @@ if __name__ == "__main__":
|
186 |
+
device = "cuda"
|
187 |
+
|
188 |
+
parser = argparse.ArgumentParser(description="Generate samples from the generator")
|
189 |
+
+ parser.add_argument("--seed", type=int, default=0)
|
190 |
+
+ parser.add_argument("--output-dir", '-o', type=str, required=True)
|
191 |
+
|
192 |
+
parser.add_argument(
|
193 |
+
"--size", type=int, default=1024, help="output image size of the generator"
|
194 |
+
@@ -37,11 +43,14 @@ if __name__ == "__main__":
|
195 |
+
parser.add_argument(
|
196 |
+
"--sample",
|
197 |
+
type=int,
|
198 |
+
- default=1,
|
199 |
+
+ default=100,
|
200 |
+
help="number of samples to be generated for each image",
|
201 |
+
)
|
202 |
+
+ parser.add_argument("--ncol", type=int, default=10)
|
203 |
+
+ parser.add_argument("--split", type=int, default=4)
|
204 |
+
+ parser.add_argument("--ext", type=str, default='png')
|
205 |
+
parser.add_argument(
|
206 |
+
- "--pics", type=int, default=20, help="number of images to be generated"
|
207 |
+
+ "--pics", type=int, default=1, help="number of images to be generated"
|
208 |
+
)
|
209 |
+
parser.add_argument("--truncation", type=float, default=1, help="truncation ratio")
|
210 |
+
parser.add_argument(
|
211 |
+
@@ -62,23 +71,31 @@ if __name__ == "__main__":
|
212 |
+
default=2,
|
213 |
+
help="channel multiplier of the generator. config-f = 2, else = 1",
|
214 |
+
)
|
215 |
+
+ parser.add_argument("--additional_multiplier", type=int, default=1)
|
216 |
+
+ parser.add_argument("--load_latent_vec", action='store_true')
|
217 |
+
+ parser.add_argument("--no-randomize-noise", dest='randomize_noise', action='store_false')
|
218 |
+
+ parser.add_argument("--n_mlp", type=int, default=8)
|
219 |
+
|
220 |
+
args = parser.parse_args()
|
221 |
+
|
222 |
+
- args.latent = 512
|
223 |
+
- args.n_mlp = 8
|
224 |
+
+ seed = args.seed
|
225 |
+
+ torch.manual_seed(seed)
|
226 |
+
+ torch.cuda.manual_seed_all(seed)
|
227 |
+
+
|
228 |
+
+ args.latent = 512 * args.additional_multiplier
|
229 |
+
|
230 |
+
g_ema = Generator(
|
231 |
+
- args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
|
232 |
+
+ args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier,
|
233 |
+
+ additional_multiplier=args.additional_multiplier
|
234 |
+
).to(device)
|
235 |
+
checkpoint = torch.load(args.ckpt)
|
236 |
+
|
237 |
+
- g_ema.load_state_dict(checkpoint["g_ema"])
|
238 |
+
+ g_ema.load_state_dict(checkpoint["g_ema"], strict=True)
|
239 |
+
|
240 |
+
- if args.truncation < 1:
|
241 |
+
+ if not args.load_latent_vec:
|
242 |
+
with torch.no_grad():
|
243 |
+
mean_latent = g_ema.mean_latent(args.truncation_mean)
|
244 |
+
else:
|
245 |
+
- mean_latent = None
|
246 |
+
+ mean_latent = checkpoint['latent_avg'].to(device)
|
247 |
+
|
248 |
+
- generate(args, g_ema, device, mean_latent)
|
249 |
+
+ generate(args, g_ema, device, mean_latent, randomize_noise=args.randomize_noise)
|
250 |
+
```
|
251 |
+
|
252 |
+
### Run
|
253 |
+
```bash
|
254 |
+
python generate.py --ckpt aydao-anime-danbooru2019s-512-5268480.pt --size 512 --n_mlp 4 --additional_multiplier 2 --load_latent_vec --no-randomize-noise -o out_images --truncation 0.6 --seed 333 --pics 1 --sample 48 --ncol 8 --ext jpg
|
255 |
+
```
|
256 |
+
|
models/aydao-anime-danbooru2019s-512-5268480.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecfdff89ad1ff94165b982e1906b2b8cf5fbedab47ac7ba43c91d3513b6b50d5
|
3 |
+
size 470194205
|
orig/aydao-anime-danbooru2019s-512-5268480.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e15a64f88f93c057da91311d6cce74db540f651f5f69e9bb66ed865321f354c
|
3 |
+
size 1056544230
|