--- license: cc0-1.0 tags: - computer-vision - image-generation - anime --- # TADNE (This Anime Does Not Exist) model The original TADNE site is https://thisanimedoesnotexist.ai/. ## Original TensorFlow model The original TADNE model is provided in [this site](https://www.gwern.net/Faces#tadne-download) under CC-0 license. ([Google Drive](https://drive.google.com/file/d/1A-E_E32WAtTHRlOzjhhYhyyBDXLJN9_H)) ## Model Conversion The model in the `models` directory is converted with the following repo: https://github.com/rosinality/stylegan2-pytorch ### Apply patches ```diff --- a/model.py +++ b/model.py @@ -395,6 +395,7 @@ class Generator(nn.Module): style_dim, n_mlp, channel_multiplier=2, + additional_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, ): @@ -426,6 +427,9 @@ class Generator(nn.Module): 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } + if additional_multiplier > 1: + for k in list(self.channels.keys()): + self.channels[k] *= additional_multiplier self.input = ConstantInput(self.channels[4]) self.conv1 = StyledConv( @@ -518,7 +522,7 @@ class Generator(nn.Module): getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) ] - if truncation < 1: + if truncation_latent is not None: style_t = [] for style in styles: ``` ```diff --- a/convert_weight.py +++ b/convert_weight.py @@ -221,6 +221,7 @@ if __name__ == "__main__": default=2, help="channel multiplier factor. config-f = 2, else = 1", ) + parser.add_argument("--additional_multiplier", type=int, default=2) parser.add_argument("path", metavar="PATH", help="path to the tensorflow weights") args = parser.parse_args() @@ -243,7 +244,8 @@ if __name__ == "__main__": if layer[0].startswith('Dense'): n_mlp += 1 - g = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier) + style_dim = 512 * args.additional_multiplier + g = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier) state_dict = g.state_dict() state_dict = fill_statedict(state_dict, g_ema.vars, size, n_mlp) @@ -254,7 +256,7 @@ if __name__ == "__main__": ckpt = {"g_ema": state_dict, "latent_avg": latent_avg} if args.gen: - g_train = Generator(size, 512, n_mlp, channel_multiplier=args.channel_multiplier) + g_train = Generator(size, style_dim, n_mlp, channel_multiplier=args.channel_multiplier, additional_multiplier=args.additional_multiplier) g_train_state = g_train.state_dict() g_train_state = fill_statedict(g_train_state, generator.vars, size, n_mlp) ckpt["g"] = g_train_state @@ -271,9 +273,12 @@ if __name__ == "__main__": batch_size = {256: 16, 512: 9, 1024: 4} n_sample = batch_size.get(size, 25) + if args.additional_multiplier > 1: + n_sample = 2 + g = g.to(device) - z = np.random.RandomState(0).randn(n_sample, 512).astype("float32") + z = np.random.RandomState(0).randn(n_sample, style_dim).astype("float32") with torch.no_grad(): img_pt, _ = g( ``` ### Build Docker image ```dockerfile FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04 ENV DEBIAN_FRONTEND=noninteractive RUN apt-get update -y && \ apt-get install -y --no-install-recommends \ git \ ninja-build \ # pyenv dependencies \ make \ build-essential \ libssl-dev \ zlib1g-dev \ libbz2-dev \ libreadline-dev \ libsqlite3-dev \ wget \ curl \ llvm \ libncursesw5-dev \ xz-utils \ tk-dev \ libxml2-dev \ libxmlsec1-dev \ libffi-dev \ liblzma-dev && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* ARG PYTHON_VERSION=3.7.12 ENV PYENV_ROOT /opt/pyenv ENV PATH ${PYENV_ROOT}/shims:${PYENV_ROOT}/bin:${PATH} RUN curl https://pyenv.run | bash RUN pyenv install ${PYTHON_VERSION} && \ pyenv global ${PYTHON_VERSION} RUN pip install --no-cache-dir -U requests tqdm opencv-python-headless RUN pip install --no-cache-dir -U tensorflow-gpu==1.15.4 RUN pip install --no-cache-dir -U torch==1.10.2+cu102 torchvision==0.11.3+cu102 -f https://download.pytorch.org/whl/torch/ -f https://download.pytorch.org/whl/torchvision/ RUN rm -rf ${HOME}/.cache/pip WORKDIR /work ENV PYTHONPATH /work/:${PYTHONPATH} ``` ```bash docker build . -t stylegan2_pytorch ``` ### Convert ```bash git clone https://github.com/NVLabs/stylegan2 docker run --rm -it -u $(id -u):$(id -g) -e XDG_CACHE_HOME=/work --ipc host --gpus all -w /work -v `pwd`:/work stylegan2_pytorch python convert_weight.py --repo stylegan2 aydao-anime-danbooru2019s-512-5268480.pkl ``` ## Usage ### Apply patch ```diff --- a/generate.py +++ b/generate.py @@ -6,21 +6,25 @@ from model import Generator from tqdm import tqdm -def generate(args, g_ema, device, mean_latent): +def generate(args, g_ema, device, mean_latent, randomize_noise): with torch.no_grad(): g_ema.eval() for i in tqdm(range(args.pics)): - sample_z = torch.randn(args.sample, args.latent, device=device) + samples = [] + for _ in range(args.split): + sample_z = torch.randn(args.sample // args.split, args.latent, device=device) - sample, _ = g_ema( - [sample_z], truncation=args.truncation, truncation_latent=mean_latent - ) + sample, _ = g_ema( + [sample_z], truncation=args.truncation, truncation_latent=mean_latent, + randomize_noise=randomize_noise + ) + samples.extend(sample) utils.save_image( - sample, - f"sample/{str(i).zfill(6)}.png", - nrow=1, + samples, + f"{args.output_dir}/{str(i).zfill(6)}.{args.ext}", + nrow=args.ncol, normalize=True, range=(-1, 1), ) @@ -30,6 +34,8 @@ if __name__ == "__main__": device = "cuda" parser = argparse.ArgumentParser(description="Generate samples from the generator") + parser.add_argument("--seed", type=int, default=0) + parser.add_argument("--output-dir", '-o', type=str, required=True) parser.add_argument( "--size", type=int, default=1024, help="output image size of the generator" @@ -37,11 +43,14 @@ if __name__ == "__main__": parser.add_argument( "--sample", type=int, - default=1, + default=100, help="number of samples to be generated for each image", ) + parser.add_argument("--ncol", type=int, default=10) + parser.add_argument("--split", type=int, default=4) + parser.add_argument("--ext", type=str, default='png') parser.add_argument( - "--pics", type=int, default=20, help="number of images to be generated" + "--pics", type=int, default=1, help="number of images to be generated" ) parser.add_argument("--truncation", type=float, default=1, help="truncation ratio") parser.add_argument( @@ -62,23 +71,31 @@ if __name__ == "__main__": default=2, help="channel multiplier of the generator. config-f = 2, else = 1", ) + parser.add_argument("--additional_multiplier", type=int, default=1) + parser.add_argument("--load_latent_vec", action='store_true') + parser.add_argument("--no-randomize-noise", dest='randomize_noise', action='store_false') + parser.add_argument("--n_mlp", type=int, default=8) args = parser.parse_args() - args.latent = 512 - args.n_mlp = 8 + seed = args.seed + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + args.latent = 512 * args.additional_multiplier g_ema = Generator( - args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier + args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, + additional_multiplier=args.additional_multiplier ).to(device) checkpoint = torch.load(args.ckpt) - g_ema.load_state_dict(checkpoint["g_ema"]) + g_ema.load_state_dict(checkpoint["g_ema"], strict=True) - if args.truncation < 1: + if not args.load_latent_vec: with torch.no_grad(): mean_latent = g_ema.mean_latent(args.truncation_mean) else: - mean_latent = None + mean_latent = checkpoint['latent_avg'].to(device) - generate(args, g_ema, device, mean_latent) + generate(args, g_ema, device, mean_latent, randomize_noise=args.randomize_noise) ``` ### Run ```bash python generate.py --ckpt aydao-anime-danbooru2019s-512-5268480.pt --size 512 --n_mlp 4 --additional_multiplier 2 --load_latent_vec --no-randomize-noise -o out_images --truncation 0.6 --seed 333 --pics 1 --sample 48 --ncol 8 --ext jpg ```