pushpikaLiyanagama
commited on
Commit
•
07e7492
1
Parent(s):
37ef436
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,36 @@
|
|
1 |
-
import
|
2 |
-
import joblib
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
models
|
8 |
-
|
9 |
-
"
|
10 |
-
"
|
11 |
-
"
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
predictions
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
'Concrete Material', 'Visual Materials', 'Self-Assessment',
|
38 |
-
'Exercises Submit', 'Quiz Submitted', 'Playing', 'Paused',
|
39 |
-
'Unstarted', 'Buffering'
|
40 |
-
]
|
41 |
-
|
42 |
-
user_input = []
|
43 |
-
for col in columns:
|
44 |
-
value = st.number_input(f"{col}", value=0.0)
|
45 |
-
user_input.append(value)
|
46 |
-
|
47 |
-
# Button for making predictions
|
48 |
-
if st.button("Predict"):
|
49 |
-
# Ensure proper input and predict
|
50 |
-
try:
|
51 |
-
predictions = predict(user_input)
|
52 |
-
st.subheader("Predictions")
|
53 |
-
st.json(predictions)
|
54 |
-
except Exception as e:
|
55 |
-
st.error(f"An error occurred: {e}")
|
56 |
-
|
57 |
-
# Share instructions for deployment
|
58 |
-
st.markdown("""
|
59 |
-
- To run the app, execute `streamlit run app.py` in your terminal.
|
60 |
-
- Make sure the `scaler.joblib` and model files are in the same directory as this script.
|
61 |
-
""")
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Load models and scaler
|
8 |
+
models = {
|
9 |
+
"processing": joblib.load("svm_model_processing.joblib"),
|
10 |
+
"perception": joblib.load("svm_model_perception.joblib"),
|
11 |
+
"input": joblib.load("svm_model_input.joblib"),
|
12 |
+
"understanding": joblib.load("svm_model_understanding.joblib"),
|
13 |
+
}
|
14 |
+
scaler = joblib.load("scaler.joblib")
|
15 |
+
|
16 |
+
@app.route("/predict", methods=["POST"])
|
17 |
+
def predict():
|
18 |
+
try:
|
19 |
+
# Parse input data from JSON
|
20 |
+
input_data = request.json
|
21 |
+
df = pd.DataFrame([input_data])
|
22 |
+
|
23 |
+
# Scale the data
|
24 |
+
df_scaled = scaler.transform(df)
|
25 |
+
|
26 |
+
# Make predictions for all target variables
|
27 |
+
predictions = {}
|
28 |
+
for target, model in models.items():
|
29 |
+
predictions[target] = model.predict(df_scaled)[0]
|
30 |
+
|
31 |
+
return jsonify({"success": True, "predictions": predictions})
|
32 |
+
except Exception as e:
|
33 |
+
return jsonify({"success": False, "error": str(e)})
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
app.run(host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|