from flask import Flask, request, jsonify import joblib import pandas as pd app = Flask(__name__) # Load models and scaler models = { "processing": joblib.load("svm_model_processing.joblib"), "perception": joblib.load("svm_model_perception.joblib"), "input": joblib.load("svm_model_input.joblib"), "understanding": joblib.load("svm_model_understanding.joblib"), } scaler = joblib.load("scaler.joblib") @app.route("/predict", methods=["POST"]) def predict(): try: # Parse input data from JSON input_data = request.json df = pd.DataFrame([input_data]) # Scale the data df_scaled = scaler.transform(df) # Make predictions for all target variables predictions = {} for target, model in models.items(): predictions[target] = model.predict(df_scaled)[0] return jsonify({"success": True, "predictions": predictions}) except Exception as e: return jsonify({"success": False, "error": str(e)}) if __name__ == "__main__": app.run(host="0.0.0.0", port=8000)