pvbhanuteja commited on
Commit
8821621
1 Parent(s): a415348

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - funsd
6
+ model-index:
7
+ - name: layoutlm-funsd
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layoutlm-funsd
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.8261
19
+ - Answer: {'precision': 0.5727482678983834, 'recall': 0.6131025957972805, 'f1': 0.5922388059701492, 'number': 809}
20
+ - Header: {'precision': 0.09302325581395349, 'recall': 0.03361344537815126, 'f1': 0.04938271604938272, 'number': 119}
21
+ - Question: {'precision': 0.6384228187919463, 'recall': 0.7145539906103286, 'f1': 0.6743464776251661, 'number': 1065}
22
+ - Overall Precision: 0.6002
23
+ - Overall Recall: 0.6327
24
+ - Overall F1: 0.6160
25
+ - Overall Accuracy: 0.7523
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 64
46
+ - eval_batch_size: 32
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 15
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.9264 | 1.0 | 3 | 1.7763 | {'precision': 0.011029411764705883, 'recall': 0.022249690976514216, 'f1': 0.01474805407619828, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.09483960948396095, 'recall': 0.12769953051643193, 'f1': 0.108843537414966, 'number': 1065} | 0.0483 | 0.0773 | 0.0595 | 0.3277 |
58
+ | 1.7361 | 2.0 | 6 | 1.6376 | {'precision': 0.0064754856614246065, 'recall': 0.00865265760197775, 'f1': 0.007407407407407408, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.17735470941883769, 'recall': 0.16619718309859155, 'f1': 0.17159476490547748, 'number': 1065} | 0.0885 | 0.0923 | 0.0904 | 0.3852 |
59
+ | 1.6212 | 3.0 | 9 | 1.5225 | {'precision': 0.02002002002002002, 'recall': 0.024721878862793572, 'f1': 0.022123893805309734, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27049180327868855, 'recall': 0.27887323943661974, 'f1': 0.27461858529819694, 'number': 1065} | 0.1512 | 0.1591 | 0.1550 | 0.4422 |
60
+ | 1.5178 | 4.0 | 12 | 1.4133 | {'precision': 0.05408388520971302, 'recall': 0.06056860321384425, 'f1': 0.05714285714285715, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.313953488372093, 'recall': 0.38028169014084506, 'f1': 0.34394904458598724, 'number': 1065} | 0.2067 | 0.2278 | 0.2168 | 0.5062 |
61
+ | 1.3853 | 5.0 | 15 | 1.3086 | {'precision': 0.08221024258760108, 'recall': 0.0754017305315204, 'f1': 0.07865892972275951, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3780202650038971, 'recall': 0.45539906103286387, 'f1': 0.4131175468483816, 'number': 1065} | 0.2696 | 0.2740 | 0.2718 | 0.5453 |
62
+ | 1.2546 | 6.0 | 18 | 1.2110 | {'precision': 0.1463768115942029, 'recall': 0.12484548825710753, 'f1': 0.13475650433622416, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4551282051282051, 'recall': 0.5333333333333333, 'f1': 0.49113705144833547, 'number': 1065} | 0.3452 | 0.3357 | 0.3404 | 0.5822 |
63
+ | 1.1842 | 7.0 | 21 | 1.1217 | {'precision': 0.2563739376770538, 'recall': 0.22373300370828184, 'f1': 0.23894389438943894, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4908512330946698, 'recall': 0.5793427230046948, 'f1': 0.5314384151593453, 'number': 1065} | 0.4055 | 0.4004 | 0.4029 | 0.6223 |
64
+ | 1.0564 | 8.0 | 24 | 1.0490 | {'precision': 0.364461738002594, 'recall': 0.3473423980222497, 'f1': 0.3556962025316456, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.509976057462091, 'recall': 0.6, 'f1': 0.551337359792925, 'number': 1065} | 0.4523 | 0.4616 | 0.4569 | 0.6679 |
65
+ | 0.9865 | 9.0 | 27 | 0.9863 | {'precision': 0.4305555555555556, 'recall': 0.4215080346106304, 'f1': 0.42598376014990635, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5528726061615321, 'recall': 0.6234741784037559, 'f1': 0.5860547219770521, 'number': 1065} | 0.4978 | 0.5043 | 0.5010 | 0.6986 |
66
+ | 0.9281 | 10.0 | 30 | 0.9357 | {'precision': 0.49454545454545457, 'recall': 0.5043263288009888, 'f1': 0.49938800489596086, 'number': 809} | {'precision': 0.034482758620689655, 'recall': 0.008403361344537815, 'f1': 0.013513513513513513, 'number': 119} | {'precision': 0.5873287671232876, 'recall': 0.644131455399061, 'f1': 0.6144200626959248, 'number': 1065} | 0.5415 | 0.5494 | 0.5455 | 0.7197 |
67
+ | 0.8646 | 11.0 | 33 | 0.8968 | {'precision': 0.5333333333333333, 'recall': 0.5438813349814586, 'f1': 0.5385556915544676, 'number': 809} | {'precision': 0.0625, 'recall': 0.01680672268907563, 'f1': 0.026490066225165563, 'number': 119} | {'precision': 0.6031746031746031, 'recall': 0.6779342723004694, 'f1': 0.6383731211317418, 'number': 1065} | 0.5667 | 0.5840 | 0.5752 | 0.7344 |
68
+ | 0.828 | 12.0 | 36 | 0.8653 | {'precision': 0.5617577197149644, 'recall': 0.584672435105068, 'f1': 0.5729860690490611, 'number': 809} | {'precision': 0.07692307692307693, 'recall': 0.025210084033613446, 'f1': 0.0379746835443038, 'number': 119} | {'precision': 0.6204013377926422, 'recall': 0.6967136150234742, 'f1': 0.6563467492260062, 'number': 1065} | 0.5864 | 0.6111 | 0.5985 | 0.7442 |
69
+ | 0.7803 | 13.0 | 39 | 0.8442 | {'precision': 0.5667828106852497, 'recall': 0.6032138442521632, 'f1': 0.5844311377245508, 'number': 809} | {'precision': 0.07142857142857142, 'recall': 0.025210084033613446, 'f1': 0.037267080745341616, 'number': 119} | {'precision': 0.6343906510851419, 'recall': 0.7136150234741784, 'f1': 0.6716747680070703, 'number': 1065} | 0.5954 | 0.6277 | 0.6111 | 0.7504 |
70
+ | 0.771 | 14.0 | 42 | 0.8312 | {'precision': 0.5679723502304147, 'recall': 0.6093943139678616, 'f1': 0.5879546809779368, 'number': 809} | {'precision': 0.09302325581395349, 'recall': 0.03361344537815126, 'f1': 0.04938271604938272, 'number': 119} | {'precision': 0.6376569037656904, 'recall': 0.7154929577464789, 'f1': 0.6743362831858407, 'number': 1065} | 0.5978 | 0.6317 | 0.6143 | 0.7516 |
71
+ | 0.7843 | 15.0 | 45 | 0.8261 | {'precision': 0.5727482678983834, 'recall': 0.6131025957972805, 'f1': 0.5922388059701492, 'number': 809} | {'precision': 0.09302325581395349, 'recall': 0.03361344537815126, 'f1': 0.04938271604938272, 'number': 119} | {'precision': 0.6384228187919463, 'recall': 0.7145539906103286, 'f1': 0.6743464776251661, 'number': 1065} | 0.6002 | 0.6327 | 0.6160 | 0.7523 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.22.0.dev0
77
+ - Pytorch 1.12.1+cu116
78
+ - Datasets 2.4.0
79
+ - Tokenizers 0.12.1
logs/events.out.tfevents.1667807865.real.engr.tamu.edu CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eac807b5a467a309ac59b39fb425cbb2a452ac59918af7b688bd4832c7daed96
3
- size 15831
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:021a7c411779304600779a59c0714bd5511b71070e266aaa5408181711addc86
3
+ size 17925
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": 224,
9
+ "tesseract_config": ""
10
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1579492262e57df47fb7ab3606a6b397e3167cf8088f8387efe280fa29e21f15
3
  size 450606565
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d232bf4fc7fa8ad51bb06379206c64c1b27ab14972c40ef568e17cc9edfa35e
3
  size 450606565
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "cls_token": "[CLS]",
5
+ "cls_token_box": [
6
+ 0,
7
+ 0,
8
+ 0,
9
+ 0
10
+ ],
11
+ "do_basic_tokenize": true,
12
+ "do_lower_case": true,
13
+ "mask_token": "[MASK]",
14
+ "model_max_length": 512,
15
+ "name_or_path": "microsoft/layoutlmv2-base-uncased",
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "special_tokens_map_file": null,
35
+ "strip_accents": null,
36
+ "tokenize_chinese_chars": true,
37
+ "tokenizer_class": "LayoutLMv2Tokenizer",
38
+ "unk_token": "[UNK]"
39
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff