File size: 3,484 Bytes
174048a
88d2311
4aea171
 
174048a
88d2311
174048a
88d2311
174048a
 
4aea171
174048a
 
 
 
 
 
 
 
 
 
4aea171
 
 
 
 
 
 
 
174048a
 
 
88d2311
 
 
 
 
 
 
9dd6788
 
88d2311
 
 
174048a
88d2311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
## Performance

### Low-level Question-Answering

This model has reached 75.12\%(*12\% better than previous version*)/74.98\%(*8.5\% better than previous version*) on Q-Bench A1 *dev/test* (multi-choice questions). 

It also outperforms the following close-source models with much larger model capacities:

| Model | *dev* | *test* |
| ---- | ---- | ---- |
| **Co-Instruct-Preview (mPLUG-Owl2) (This Model)** | **75.12\%** | **74.98\%** |
| \*GPT-4V-Turbo | 74.41\% | 74.10\% |
| \*Qwen-VL-**Max** | 73.63\%  | 73.90\% |
| \*GPT-4V (Nov. 2023) | 71.78\% | 73.44\% |
| \*Gemini-Pro | 68.16\% | 69.46\% | 
| Q-Instruct (mPLUG-Owl2, Nov. 2023) | 67.42\% | 70.43\% |
| \*Qwen-VL-Plus | 66.01\% | 68.93\% |
| mPLUG-Owl2 | 62.14\% | 62.68\% |

\*: Proprietary Models.

#### Image/Video Quality Assessment

| Model                    | live         | agi          | livec       | test_spaq   | csiq        | test_kadid  | test_koniq  | konvid      | maxwell_test |
|--------------------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|**Co-Instruct-Preview (mPLUG-Owl2) (This Model)**     | **0.771/0.751**  | **0.727/0.749**  | **0.861/0.865** | **0.946/0.938** | **0.735/0.748** | **0.782/0.770** | **0.908/0.941** | **0.818/0.790** | **0.735/0.714**  |
| Q-Instruct (mPLUG-Owl2, Nov. 2023) | 0.749/0.747  | 0.710/0.753  | 0.781/0.791 | 0.921/0.917 | 0.693/0.723 | 0.670/0.665 | 0.904/0.921 | 0.766/0.738 | 0.650/0.649  |


We are also constructing multi-image benchmark sets (image pairs, triple-quadruple images), and the results on multi-image benchmarks will be released soon!

## Load Model

```python
import torch
from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("q-future/co-instruct-preview", 
                                             trust_remote_code=True, 
                                             torch_dtype=torch.float16,
                                             attn_implementation="flash_attention_2", 
                                             device_map={"":"cuda:0"})
```

## Chat

```python
import requests
from PIL import Image


### Single Image
prompt = "USER: The image: <|image|> Which happens in this image: motion-blur, over-exposure, or under-exposure? ASSISTANT:"
url = "https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg"
image = Image.open(requests.get(url,stream=True).raw)
model.chat(prompt, [image], max_new_tokens=200)

## Motion blur

### Double Image Comparison
prompt_cmp = "USER: The first image: <|image|>\nThe second image: <|image|>Which image has better quality, and why? ASSISTANT:"
url = "https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/boy_colorful.jpg"
image_2 = Image.open(requests.get(url,stream=True).raw)
model.chat(prompt_cmp, [image, image_2], max_new_tokens=200)

## The second image has better quality. The description indicates that the image has accurate exposure, precise focus, clear details, rich colors, and sufficient lighting. Additionally, the texture details are clear, and the composition is centered. In comparison, the first image has good clarity and rich texture details, but the lighting is slightly weak, which can affect the overall quality of the image. Therefore, the second image is of higher quality due to its accurate exposure, precise focus, clear details, rich colors, sufficient lighting, and centered composition.

```