File size: 2,796 Bytes
8633c57 a36e7d0 8633c57 a36e7d0 8633c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
language:
- fr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Base French
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 fr
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 24.064827553489256
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs fr_fr
type: google/fleurs
config: fr_fr
split: test
args: fr_fr
metrics:
- name: Wer
type: wer
value: 24.20
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: facebook/voxpopuli fr
type: facebook/voxpopuli
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 23.66
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base French
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_11_0 fr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4968
- Wer on `mozilla-foundation/common_voice_11_0` `fr`: 24.0648
- Wer on `google/fleurs` `fr_fr`: 24.20
- Wer on `facebook/voxpopuli` `fr`: 23.66
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.534 | 0.2 | 1000 | 0.5710 | 27.4408 |
| 0.4409 | 1.2 | 2000 | 0.5279 | 25.1981 |
| 0.3095 | 2.2 | 3000 | 0.5117 | 25.0818 |
| 0.3285 | 3.2 | 4000 | 0.4995 | 24.0601 |
| 0.3032 | 4.2 | 5000 | 0.4968 | 24.0648 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|