Quentin Gallouédec
commited on
Commit
•
7b1549c
1
Parent(s):
0e1f5bf
Initial commit
Browse files- .gitattributes +1 -0
- README.md +78 -0
- args.yml +79 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- ppo-Pendulum-v1.zip +3 -0
- ppo-Pendulum-v1/_stable_baselines3_version +1 -0
- ppo-Pendulum-v1/data +100 -0
- ppo-Pendulum-v1/policy.optimizer.pth +3 -0
- ppo-Pendulum-v1/policy.pth +3 -0
- ppo-Pendulum-v1/pytorch_variables.pth +3 -0
- ppo-Pendulum-v1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Pendulum-v1
|
16 |
+
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -212.04 +/- 128.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **Pendulum-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **Pendulum-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Pendulum-v1 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env Pendulum-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Pendulum-v1 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env Pendulum-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env Pendulum-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('clip_range', 0.2),
|
66 |
+
('ent_coef', 0.0),
|
67 |
+
('gae_lambda', 0.95),
|
68 |
+
('gamma', 0.9),
|
69 |
+
('learning_rate', 0.001),
|
70 |
+
('n_envs', 4),
|
71 |
+
('n_epochs', 10),
|
72 |
+
('n_steps', 1024),
|
73 |
+
('n_timesteps', 100000.0),
|
74 |
+
('policy', 'MlpPolicy'),
|
75 |
+
('sde_sample_freq', 4),
|
76 |
+
('use_sde', True),
|
77 |
+
('normalize', False)])
|
78 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- Pendulum-v1
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 20
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 5
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 1422831320
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- runs/Pendulum-v1__ppo__1422831320__1670942118
|
62 |
+
- - track
|
63 |
+
- true
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- openrlbenchmark
|
76 |
+
- - wandb_project_name
|
77 |
+
- sb3
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - clip_range
|
3 |
+
- 0.2
|
4 |
+
- - ent_coef
|
5 |
+
- 0.0
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.95
|
8 |
+
- - gamma
|
9 |
+
- 0.9
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - n_envs
|
13 |
+
- 4
|
14 |
+
- - n_epochs
|
15 |
+
- 10
|
16 |
+
- - n_steps
|
17 |
+
- 1024
|
18 |
+
- - n_timesteps
|
19 |
+
- 100000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - sde_sample_freq
|
23 |
+
- 4
|
24 |
+
- - use_sde
|
25 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05f9d36d17f78a2e993e832cb1ef91d01c2a286234080085b87232f7778c1e0c
|
3 |
+
size 143441
|
ppo-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
ppo-Pendulum-v1/data
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff656590d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff656590dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff656590e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff656590ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff656590f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff656591040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff6565910d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff656591160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff6565911f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff656591280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff656591310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff6565913a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff656959100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
3
|
30 |
+
],
|
31 |
+
"low": "[-1. -1. -8.]",
|
32 |
+
"high": "[1. 1. 8.]",
|
33 |
+
"bounded_below": "[ True True True]",
|
34 |
+
"bounded_above": "[ True True True]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
1
|
43 |
+
],
|
44 |
+
"low": "[-2.]",
|
45 |
+
"high": "[2.]",
|
46 |
+
"bounded_below": "[ True]",
|
47 |
+
"bounded_above": "[ True]",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 102400,
|
52 |
+
"_total_timesteps": 100000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1670942120896618704,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
60 |
+
},
|
61 |
+
"tensorboard_log": "runs/Pendulum-v1__ppo__1422831320__1670942118/Pendulum-v1",
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": null,
|
72 |
+
"_episode_num": 0,
|
73 |
+
"use_sde": true,
|
74 |
+
"sde_sample_freq": 4,
|
75 |
+
"_current_progress_remaining": -0.02400000000000002,
|
76 |
+
"ep_info_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdmuZDMfDb8CUhpRSlIwBbJRLyIwBdJRHQFMi1ZkkKNR1fZQoaAZoCWgPQwhoQSjvI85wwJSGlFKUaBVLyGgWR0BTIsvIwM6SdX2UKGgGaAloD0MIHeVgNgFG8r+UhpRSlGgVS8hoFkdAUyLCO3lS0nV9lChoBmgJaA9DCNHrT+Jze27AlIaUUpRoFUvIaBZHQFMiuRLbpNd1fZQoaAZoCWgPQwhhGRu62T9hwJSGlFKUaBVLyGgWR0BTMMNH6MzedX2UKGgGaAloD0MIXJNuS+QseMCUhpRSlGgVS8hoFkdAUzC5f+jubHV9lChoBmgJaA9DCFMgs7OImYLAlIaUUpRoFUvIaBZHQFMwr/Khcqx1fZQoaAZoCWgPQwih8xq7RIRhwJSGlFKUaBVLyGgWR0BTMKbF0gbIdX2UKGgGaAloD0MIixh2GJPTYMCUhpRSlGgVS8hoFkdAUz4jjaPCEnV9lChoBmgJaA9DCFz/rs8csnDAlIaUUpRoFUvIaBZHQFM+GcnVoYh1fZQoaAZoCWgPQwhpVOBkG/gBwJSGlFKUaBVLyGgWR0BTPhBAv+OwdX2UKGgGaAloD0MI5pMVw5UWcMCUhpRSlGgVS8hoFkdAUz4HE/B3zXV9lChoBmgJaA9DCJ+RCI0gjXfAlIaUUpRoFUvIaBZHQFNLH5rP+n91fZQoaAZoCWgPQwijWkQUk/FgwJSGlFKUaBVLyGgWR0BTSxXS0BwNdX2UKGgGaAloD0MIYhHDDuOxcMCUhpRSlGgVS8hoFkdAU0sMRYigTXV9lChoBmgJaA9DCCk+PiG7+HzAlIaUUpRoFUvIaBZHQFNLAxi5NGp1fZQoaAZoCWgPQwh+OEiIcm1hwJSGlFKUaBVLyGgWR0BUA0NBnjABdX2UKGgGaAloD0MIHnBdMSO8GcCUhpRSlGgVS8hoFkdAVAM6DGtITXV9lChoBmgJaA9DCO+NIQA402DAlIaUUpRoFUvIaBZHQFQDMI/qxC91fZQoaAZoCWgPQwh/iA0WzvR2wJSGlFKUaBVLyGgWR0BUAydvsJIEdX2UKGgGaAloD0MIuRYtQBvecMCUhpRSlGgVS8hoFkdAVBARlHz6J3V9lChoBmgJaA9DCNRDNLqDF3DAlIaUUpRoFUvIaBZHQFQQB8hLXcx1fZQoaAZoCWgPQwjrAfOQKa9wwJSGlFKUaBVLyGgWR0BUD/4/NZ/1dX2UKGgGaAloD0MIiGNd3MbFYMCUhpRSlGgVS8hoFkdAVA/1Gsmv4nV9lChoBmgJaA9DCPpCyHn/enDAlIaUUpRoFUvIaBZHQFQc4XGff411fZQoaAZoCWgPQwguAI3SpfVgwJSGlFKUaBVLyGgWR0BUHNeY2Kl6dX2UKGgGaAloD0MIio9PyM4SYMCUhpRSlGgVS8hoFkdAVBzOB19v0nV9lChoBmgJaA9DCMql8Quv5AbAlIaUUpRoFUvIaBZHQFQcxNqQA+91fZQoaAZoCWgPQwii68IPzhBhwJSGlFKUaBVLyGgWR0BUKD7655JLdX2UKGgGaAloD0MIVOI6xhX5YMCUhpRSlGgVS8hoFkdAVCg1O0svqXV9lChoBmgJaA9DCIY41sVtlAvAlIaUUpRoFUvIaBZHQFQoK64Ds+p1fZQoaAZoCWgPQwjqeqLrwiFwwJSGlFKUaBVLyGgWR0BUKCJ9AooedX2UKGgGaAloD0MID5pd99YFYcCUhpRSlGgVS8hoFkdAVDOvLX+VDHV9lChoBmgJaA9DCFth+l4DyXDAlIaUUpRoFUvIaBZHQFQzpV0cOsl1fZQoaAZoCWgPQwgrTrUWZpEXwJSGlFKUaBVLyGgWR0BUM5vP1L8KdX2UKGgGaAloD0MI5kAPte2KYMCUhpRSlGgVS8hoFkdAVDOSowVTJnV9lChoBmgJaA9DCH4AUps4efm/lIaUUpRoFUvIaBZHQFTetDlYEGJ1fZQoaAZoCWgPQwjlQ1A1+oaAwJSGlFKUaBVLyGgWR0BU3qrzXjEOdX2UKGgGaAloD0MIxRouck/X/r+UhpRSlGgVS8hoFkdAVN6hbnoxH3V9lChoBmgJaA9DCKlKW1yjiHLAlIaUUpRoFUvIaBZHQFTemEGqxTt1fZQoaAZoCWgPQwj8HB8tzoVgwJSGlFKUaBVLyGgWR0BU6gK0D2aldX2UKGgGaAloD0MI2GMipZnJcMCUhpRSlGgVS8hoFkdAVOn433pOe3V9lChoBmgJaA9DCF9egH10CgbAlIaUUpRoFUvIaBZHQFTp71Iy0rt1fZQoaAZoCWgPQwi8PQgB+ZIZwJSGlFKUaBVLyGgWR0BU6eYhMajvdX2UKGgGaAloD0MIfQiqRi/ZYMCUhpRSlGgVS8hoFkdAVPVY6nzg/HV9lChoBmgJaA9DCGbdPxYiOGDAlIaUUpRoFUvIaBZHQFT1TxoZhrp1fZQoaAZoCWgPQwhznrEv2SJuwJSGlFKUaBVLyGgWR0BU9UWM0gr6dX2UKGgGaAloD0MIZOlDF9SAd8CUhpRSlGgVS8hoFkdAVPU8ZDRc/3V9lChoBmgJaA9DCG9L5IIzuP6/lIaUUpRoFUvIaBZHQFUAuTzND+l1fZQoaAZoCWgPQwhtN8E3TYFgwJSGlFKUaBVLyGgWR0BVAK+FlCkXdX2UKGgGaAloD0MIj4tqEVEM/L+UhpRSlGgVS8hoFkdAVQCl9BrvcHV9lChoBmgJaA9DCPBQFOjTS3DAlIaUUpRoFUvIaBZHQFUAnMMZxaR1fZQoaAZoCWgPQwgNcayLWwJxwJSGlFKUaBVLyGgWR0BVDL+o99tudX2UKGgGaAloD0MI6SrdXWeFccCUhpRSlGgVS8hoFkdAVQy11GLDRHV9lChoBmgJaA9DCB6pvvPLInHAlIaUUpRoFUvIaBZHQFUMrGipNsZ1fZQoaAZoCWgPQwjlKavpesIKwJSGlFKUaBVLyGgWR0BVDKM3qAz6dX2UKGgGaAloD0MIINPaNLZiYMCUhpRSlGgVS8hoFkdAVcVfhMrVfHV9lChoBmgJaA9DCPzCK0meamDAlIaUUpRoFUvIaBZHQFXFVk+X7ch1fZQoaAZoCWgPQwiEEfsEMFuCwJSGlFKUaBVLyGgWR0BVxUzTF2mpdX2UKGgGaAloD0MIUigLX1/rAMCUhpRSlGgVS8hoFkdAVcVDrqt5lnV9lChoBmgJaA9DCEp5rYRua2DAlIaUUpRoFUvIaBZHQFXSLofSx7l1fZQoaAZoCWgPQwgqAwe0tFJ1wJSGlFKUaBVLyGgWR0BV0iTEBKcvdX2UKGgGaAloD0MIsoF0semHb8CUhpRSlGgVS8hoFkdAVdIbOu7pV3V9lChoBmgJaA9DCET3rGu0hmDAlIaUUpRoFUvIaBZHQFXSEiMYMv11fZQoaAZoCWgPQwgJpS+EXHR4wJSGlFKUaBVLyGgWR0BV3wH7gsK9dX2UKGgGaAloD0MIbm3heakVcsCUhpRSlGgVS8hoFkdAVd74Ju2qk3V9lChoBmgJaA9DCK4oJQSrkXbAlIaUUpRoFUvIaBZHQFXe7pmmLtN1fZQoaAZoCWgPQwjuIeF7f4VgwJSGlFKUaBVLyGgWR0BV3uVopQUIdX2UKGgGaAloD0MITpfFxObyXsCUhpRSlGgVS8hoFkdAVez4Glhw2nV9lChoBmgJaA9DCOwYV1ycg2DAlIaUUpRoFUvIaBZHQFXs7kGRmsh1fZQoaAZoCWgPQwgVcM/zp8ZuwJSGlFKUaBVLyGgWR0BV7OS0Sh8IdX2UKGgGaAloD0MIbLJGPcQxYcCUhpRSlGgVS8hoFkdAVezbi6xxDXV9lChoBmgJaA9DCPD9DdrrwXnAlIaUUpRoFUvIaBZHQFX69eyAxzt1fZQoaAZoCWgPQwjUZMbbiudwwJSGlFKUaBVLyGgWR0BV+uwkgOjJdX2UKGgGaAloD0MIofZbO9EDYMCUhpRSlGgVS8hoFkdAVfriqABkqnV9lChoBmgJaA9DCMDQI0bPmWDAlIaUUpRoFUvIaBZHQFX62Xb/Ot51fZQoaAZoCWgPQwiaQXxgR/xxwJSGlFKUaBVLyGgWR0BWu7ILgGbDdX2UKGgGaAloD0MID9b/OcyCX8CUhpRSlGgVS8hoFkdAVruowVTJhnV9lChoBmgJaA9DCI6SV+cYEAzAlIaUUpRoFUvIaBZHQFa7n1WbPQh1fZQoaAZoCWgPQwjcKoiBrh0LwJSGlFKUaBVLyGgWR0BWu5YxL0z1dX2UKGgGaAloD0MIpMLYQtALccCUhpRSlGgVS8hoFkdAVsmtMfzSTnV9lChoBmgJaA9DCDjzqzmAhHfAlIaUUpRoFUvIaBZHQFbJo3rD6311fZQoaAZoCWgPQwiH3Aw34HPwv5SGlFKUaBVLyGgWR0BWyZnpSrHVdX2UKGgGaAloD0MIZ0XURB/Yd8CUhpRSlGgVS8hoFkdAVsmQ3gk1M3V9lChoBmgJaA9DCPlNYaWCqgjAlIaUUpRoFUvIaBZHQFbXrvb48EF1fZQoaAZoCWgPQwgCgjl6/PhfwJSGlFKUaBVLyGgWR0BW16UiY9gXdX2UKGgGaAloD0MICqAYWbJhYMCUhpRSlGgVS8hoFkdAVtebkOqeb3V9lChoBmgJaA9DCPMbJhqkUGDAlIaUUpRoFUvIaBZHQFbXkmQbMot1fZQoaAZoCWgPQwjlmgKZnUXpv5SGlFKUaBVLyGgWR0BXD508vEjxdX2UKGgGaAloD0MI4bchxmve6b+UhpRSlGgVS8hoFkdAVw+TzND+i3V9lChoBmgJaA9DCN14d2SsEGHAlIaUUpRoFUvIaBZHQFcPjhUBGQV1fZQoaAZoCWgPQwha2T7k7SZxwJSGlFKUaBVLyGgWR0BXD4UFjd56dX2UKGgGaAloD0MIf4P26uObYMCUhpRSlGgVS8hoFkdAVxx8stkFwHV9lChoBmgJaA9DCETC9/6GNGHAlIaUUpRoFUvIaBZHQFccctoSL611fZQoaAZoCWgPQwgVOq+xC9RwwJSGlFKUaBVLyGgWR0BXHGlMyrPudX2UKGgGaAloD0MIX7THC+ndXsCUhpRSlGgVS8hoFkdAVxxgG8mKInV9lChoBmgJaA9DCJnzjH1Jr2DAlIaUUpRoFUvIaBZHQFcpSde6Zpl1fZQoaAZoCWgPQwgnMJ3W7WZgwJSGlFKUaBVLyGgWR0BXKUALiMo+dX2UKGgGaAloD0MIbMuAsxRdcMCUhpRSlGgVS8hoFkdAVyk2hqTKT3V9lChoBmgJaA9DCCnni70XSnDAlIaUUpRoFUvIaBZHQFcpLVnVXmx1ZS4="
|
79 |
+
},
|
80 |
+
"ep_success_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
83 |
+
},
|
84 |
+
"_n_updates": 250,
|
85 |
+
"n_steps": 1024,
|
86 |
+
"gamma": 0.9,
|
87 |
+
"gae_lambda": 0.95,
|
88 |
+
"ent_coef": 0.0,
|
89 |
+
"vf_coef": 0.5,
|
90 |
+
"max_grad_norm": 0.5,
|
91 |
+
"batch_size": 64,
|
92 |
+
"n_epochs": 10,
|
93 |
+
"clip_range": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
96 |
+
},
|
97 |
+
"clip_range_vf": null,
|
98 |
+
"normalize_advantage": true,
|
99 |
+
"target_kl": null
|
100 |
+
}
|
ppo-Pendulum-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80b519f4190cbd55fb84edd1c0f14c5fa712faa1e52ddbc1e7c9c442fc971d9d
|
3 |
+
size 82672
|
ppo-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a0ac8c7ca3be56de5681e1cadb13a6491eaa4203f64baa322bb87b11f02f4f6
|
3 |
+
size 40510
|
ppo-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90f4eb289d01729885fdb52bba19643f4ecf9c04ff3da8074fd87e2363893177
|
3 |
+
size 142214
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -212.0426082, "std_reward": 128.60239917731104, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:14:57.293374"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8da80f3adc71180eed2a8e41fc0f98694060005f5412b1303402eed04628f55b
|
3 |
+
size 16508
|