{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "reset_noise": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6027917d00>" }, "verbose": 1, "policy_kwargs": { "log_std_init": -3.67, "net_arch": [ 64, 64 ], "use_sde": true }, "observation_space": { ":type:": "", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 2 ], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [ 1 ], "low": "[-1.]", "high": "[1.]", "bounded_below": "[ True]", "bounded_above": "[ True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 50016, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1671732204848114644, "learning_rate": { ":type:": "", ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAABvY4r4NHhW8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg==" }, "_episode_num": 430, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.000320000000000098, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFeyyzHCGeuMAWyUS0eMAXSUR0B0K0ADJU5udX2UKGgGR0BXI7SVnmJWaAdLYmgIR0B0NXB7/n4gdX2UKGgGR0BXwJGSZBszaAdLRWgIR0B0PNeyAxzrdX2UKGgGR0BXRl63RXwLaAdLUWgIR0B0RO9OARTTdX2UKGgGR0BXhk/SpiqiaAdLRmgIR0B0TxnezlcRdX2UKGgGR0BXn98zAN5MaAdLR2gIR0B0Vfaews5GdX2UKGgGR0BW+043m3fAaAdLVmgIR0B0YB9v0h/zdX2UKGgGR0BXc++AVfu1aAdLXWgIR0B0ZzRnezlcdX2UKGgGR0BXrvoRqXWwaAdLTGgIR0B0cT/dZaFFdX2UKGgGR0BXncm8dxQ0aAdLT2gIR0B0eDNeMQ2/dX2UKGgGR0BXllpsXSBtaAdLU2gIR0B0g5F+d9UkdX2UKGgGR0BXokwztTkyaAdLUWgIR0B0i6yeI2wWdX2UKGgGR0BXqdgBtDUmaAdLTWgIR0B0l2dpZfUndX2UKGgGR0BXs7WVeKKpaAdLRWgIR0B0n2T0QK8ddX2UKGgGR0BXkbI91U2laAdLTWgIR0B0p3KeTV2BdX2UKGgGR0BXgMtsenyeaAdLbmgIR0B0tylxffGddX2UKGgGR0BXqM7hegL7aAdLRGgIR0B0vwW43FUAdX2UKGgGR0BXp92TxG2DaAdLSGgIR0B0xvP/rB0qdX2UKGgGR0BXcJzxPO6eaAdLUGgIR0B00sCkoF3ZdX2UKGgGR0BXpg7HQyAQaAdLSGgIR0B02rGaQV9GdX2UKGgGR0BXU3xe9i+daAdLV2gIR0B05oYNy5qedX2UKGgGR0BXquii7CizaAdLTGgIR0B07oHQhOgydX2UKGgGR0BXySNfgJkYaAdLSWgIR0B09nY+Sr5qdX2UKGgGR0BXwmNrCWNWaAdLS2gIR0B1AjZWaMJhdX2UKGgGR0BWt/WH1vl2aAdLrmgIR0B1Fh2eQMhHdX2UKGgGR0BXwyuMdcSoaAdLSWgIR0B1Hh+lTFVDdX2UKGgGR0BXifQnhKlIaAdLTWgIR0B1Kfdgv115dX2UKGgGR0BXgXQla8pTaAdLQmgIR0B1MezcAR02dX2UKGgGR0BXQ/ddmg8KaAdLYGgIR0B1PdSIgvDhdX2UKGgGR0BXqXZwn6VMaAdLSGgIR0B1RdhnanJldX2UKGgGR0BXdLUkOZssaAdLTmgIR0B1UZ7u2JBPdX2UKGgGR0BXRi4Wk8A8aAdLZmgIR0B1XZNN8E3bdX2UKGgGR0BXtVh9b5doaAdLTGgIR0B1ZZuGbkOqdX2UKGgGR0BXbSVKPGQ0aAdLXmgIR0B1cWPEKmbcdX2UKGgGR0BX1zLns9jgaAdLSGgIR0B1eV/FzdULdX2UKGgGR0BXwQJPZZjhaAdLS2gIR0B1hRbD/EOzdX2UKGgGR0BXn2tuDSPVaAdLSmgIR0B1jPndO6/ZdX2UKGgGR0BXqZzgdfb9aAdLSWgIR0B1lQSuhbnpdX2UKGgGR0BYKNvfj0cwaAdLZGgIR0B1oN+/gzgudX2UKGgGR0BXT1hgE2YOaAdLSWgIR0B1rIBbOeJ6dX2UKGgGR0BXPCZOSGJvaAdLZGgIR0B1uGFcpsoEdX2UKGgGR0BXgtUOuq3maAdLRmgIR0B1wF8pkPMCdX2UKGgGR0BX5WEXcgyNaAdLT2gIR0B1yG3lS0jUdX2UKGgGR0BXcJ7CzkZKaAdLSmgIR0B11Ct8uzyCdX2UKGgGR0BXcG9pRGc4aAdLY2gIR0B14BuivgWKdX2UKGgGR0BXn1Q66reZaAdLU2gIR0B16DHjp9qldX2UKGgGR0BXkG2G7BfsaAdLSGgIR0B188Dr7fpEdX2UKGgGR0BV55ZntfG/aAdLnmgIR0B2B7PSlWOqdX2UKGgGR0BXioEfT1CgaAdLUmgIR0B2D9yGSIP9dX2UKGgGR0BXm21D0DlpaAdLVWgIR0B2G6KtPpIMdX2UKGgGR0BXYrMPjGT+aAdLUmgIR0B2I8tI065odX2UKGgGR0BXo/nB+F10aAdLTWgIR0B2L4OH31zydX2UKGgGR0BXpUzwc5sCaAdLTGgIR0B2N4x33YcvdX2UKGgGR0BXXr/0dzXCaAdLTGgIR0B2Q1uqFRHgdX2UKGgGR0BXqQfIS13MaAdLSGgIR0B2S1P8AJb/dX2UKGgGR0BXDtaMaS9vaAdLbmgIR0B2V065oXbedX2UKGgGR0BXlvSx7iQ1aAdLUmgIR0B2YyciGFi8dX2UKGgGR0BXik7jkuHvaAdLRmgIR0B2axXXAdn1dX2UKGgGR0BX40GFBY3eaAdLWWgIR0B2dvw/gR9PdX2UKGgGR0BXy7McIZ62aAdLVWgIR0B2fyQHRkVfdX2UKGgGR0BXhkr08NhFaAdLS2gIR0B2iu5PM0P6dX2UKGgGR0BXO2WY4Qz2aAdLZmgIR0B2lu6+WWyDdX2UKGgGR0BXovUe+23KaAdLSWgIR0B2nwHdGiHqdX2UKGgGR0BXdp3gUDdQaAdLS2gIR0B2qseA/cFhdX2UKGgGR0BXnRyGSIP9aAdLRmgIR0B2ssohIOH4dX2UKGgGR0BXe2JN0vGqaAdLUWgIR0B2uufK6nR+dX2UKGgGR0BXsskY4yXVaAdLS2gIR0B2xrM8ox5+dX2UKGgGR0BXUzuBtk4FaAdLVWgIR0B2zsYdhiLEdX2UKGgGR0BX5wVfu1F6aAdLS2gIR0B22n1HvttzdX2UKGgGR0BXlGXb/Ot5aAdLS2gIR0B24ooG6f8NdX2UKGgGR0BWD8GC7K7qaAdLr2gIR0B29pi2DxsmdX2UKGgGR0BXnv0qYqoZaAdLUmgIR0B3AlG9YfW+dX2UKGgGR0BXK6gZjx0/aAdLe2gIR0B3EhlWfbsXdX2UKGgGR0BXhysOoYNzaAdLSGgIR0B3GgwaisXBdX2UKGgGR0BXrluJk5IZaAdLVmgIR0B3Jd7iQ1aXdX2UKGgGR0BX0cMiKR+0aAdLU2gIR0B3Lfttygf2dX2UKGgGR0BXm0mhM8HOaAdLSWgIR0B3OboRqXWwdX2UKGgGR0BXjHBxgiNbaAdLRWgIR0B3QbawljVhdX2UKGgGR0BXgLlzU7SzaAdLcWgIR0B3TcHIIWxhdX2UKGgGR0BXkqmGdqcmaAdLSmgIR0B3WYGhVU++dX2UKGgGR0BXdTEehf0FaAdLbmgIR0B3ZZ5LRKHxdX2UKGgGR0BXuWitaIN3aAdLSmgIR0B3bayUs4DLdX2UKGgGR0BXjea8Yht+aAdLU2gIR0B3eWjRD1GtdX2UKGgGR0BXG08NhE0BaAdLgmgIR0B3iUHZ9NN8dX2UKGgGR0BXVYZQ53kgaAdLZWgIR0B3lU6+36RAdX2UKGgGR0BXgMP8Q7LdaAdLUmgIR0B3oRWgezUrdX2UKGgGR0BXwORT0g8saAdLWWgIR0B3rBycTakAdX2UKGgGR0BX15iNKh+OaAdLW2gIR0B3tFHnU2DQdX2UKGgGR0BXvAc1fmcOaAdLSmgIR0B3vzeqJdjYdX2UKGgGR0BX3RqKxcFAaAdLXmgIR0B3yn0jC53DdX2UKGgGR0BXeETxoZhsaAdLTmgIR0B30nTEzfrKdX2UKGgGR0BXXqXfIjnnaAdLT2gIR0B33j1SOzY3dX2UKGgGR0BXn3Sa3I+4aAdLZGgIR0B36j2lEZzgdX2UKGgGR0BXpLa/RE4OaAdLSmgIR0B38k9cKPXDdX2UKGgGR0BXgD50r9VFaAdLZmgIR0B3/lScbzbwdX2UKGgGR0BXXWzjWCmNaAdLTmgIR0B4CiEDhcZ+dX2UKGgGR0BXl0B0ZFXraAdLTmgIR0B4EjriVB2PdX2UKGgGR0BXvgVO9FnaaAdLSWgIR0B4Gjr4WUKRdX2UKGgGR0BXmZN47ihnaAdLTWgIR0B4Jf/vOQhfdX2UKGgGR0BXrQtJ4B3iaAdLUGgIR0B4MUjs2NvPdWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 50016, "buffer_size": 1, "batch_size": 512, "learning_starts": 0, "tau": 0.01, "gamma": 0.9999, "gradient_steps": 32, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6027962a40>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "target_entropy": -1.0, "log_ent_coef": null, "ent_coef": 0.1, "target_update_interval": 1, "ent_coef_optimizer": null, "batch_norm_stats": [], "batch_norm_stats_target": [] }