File size: 19,410 Bytes
0ae6ebc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.sac.policies",
        "__doc__": "\n    Policy class (with both actor and critic) for SAC.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    :param n_critics: Number of critic networks to create.\n    :param share_features_extractor: Whether to share or not the features extractor\n        between the actor and the critic (this saves computation time)\n    ",
        "__init__": "<function SACPolicy.__init__ at 0x7fe9a7611ca0>",
        "_build": "<function SACPolicy._build at 0x7fe9a7611d30>",
        "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fe9a7611dc0>",
        "reset_noise": "<function SACPolicy.reset_noise at 0x7fe9a7611e50>",
        "make_actor": "<function SACPolicy.make_actor at 0x7fe9a7611ee0>",
        "make_critic": "<function SACPolicy.make_critic at 0x7fe9a7611f70>",
        "forward": "<function SACPolicy.forward at 0x7fe9a761a040>",
        "_predict": "<function SACPolicy._predict at 0x7fe9a761a0d0>",
        "set_training_mode": "<function SACPolicy.set_training_mode at 0x7fe9a761a160>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fe9a7617e00>"
    },
    "verbose": 1,
    "policy_kwargs": {
        "use_sde": false
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -8.]",
        "high": "[1. 1. 8.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
        "dtype": "float32",
        "_shape": [
            1
        ],
        "low": "[-2.]",
        "high": "[2.]",
        "bounded_below": "[ True]",
        "bounded_above": "[ True]",
        "_np_random": "RandomState(MT19937)"
    },
    "n_envs": 1,
    "num_timesteps": 20000,
    "_total_timesteps": 20000,
    "_num_timesteps_at_start": 0,
    "seed": 0,
    "action_noise": null,
    "start_time": 1670944096289797974,
    "learning_rate": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
    },
    "tensorboard_log": "runs/Pendulum-v1__sac__1194698695__1670944094/Pendulum-v1",
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
    },
    "_last_obs": null,
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAP69fj8mxco90yTnvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
    },
    "_episode_num": 100,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrRbYY/IemsCUhpRSlIwBbJRLyIwBdJRHP/2TA31jAi51fZQoaAZoCWgPQwhhwmhWBoicwJSGlFKUaBVLyGgWR0ALbiVB2OhkdX2UKGgGaAloD0MIe737400vnMCUhpRSlGgVS8hoFkdAE9BikO7QLXV9lChoBmgJaA9DCMSvWMNVSZLAlIaUUpRoFUvIaBZHQBoGCyyD7Il1fZQoaAZoCWgPQwgqqRPQJK+WwJSGlFKUaBVLyGgWR0AgQZb6guh9dX2UKGgGaAloD0MIiKBq9NqkmMCUhpRSlGgVS8hoFkdAI4MFUyYXwnV9lChoBmgJaA9DCEEsmznET5bAlIaUUpRoFUvIaBZHQCatjwx33Yd1fZQoaAZoCWgPQwjohqbslIuSwJSGlFKUaBVLyGgWR0Ap1pwCKaXsdX2UKGgGaAloD0MISKMCJ3vHksCUhpRSlGgVS8hoFkdALQFUp/gBLnV9lChoBmgJaA9DCJ+RCI3QfJDAlIaUUpRoFUvIaBZHQDAOSLZSNwR1fZQoaAZoCWgPQwhvtyQHrFGQwJSGlFKUaBVLyGgWR0AxnbmEGqxUdX2UKGgGaAloD0MI6BN5khS/isCUhpRSlGgVS8hoFkdAMzT850bLlnV9lChoBmgJaA9DCJZZhGJrWIDAlIaUUpRoFUvIaBZHQDTKT4cm0E51fZQoaAZoCWgPQwjKpIY2AM1gwJSGlFKUaBVLyGgWR0A2VZpi7TUidX2UKGgGaAloD0MIsrrVc9K8YMCUhpRSlGgVS8hoFkdAN+pPVNHpbHV9lChoBmgJaA9DCJVGzOxzSovAlIaUUpRoFUvIaBZHQDl/eP7vXsh1fZQoaAZoCWgPQwiut81UiLlxwJSGlFKUaBVLyGgWR0A7FPHDJlredX2UKGgGaAloD0MISGsMOiFUYMCUhpRSlGgVS8hoFkdAPK3X2/SH/XV9lChoBmgJaA9DCERSCyWTSGDAlIaUUpRoFUvIaBZHQD5FAcDKYAt1fZQoaAZoCWgPQwj+Q/rt68JtwJSGlFKUaBVLyGgWR0A/25Ec81XOdX2UKGgGaAloD0MIPUSjO4gd8L+UhpRSlGgVS8hoFkdAQLjsF+uvEHV9lChoBmgJaA9DCGQ730+NAGDAlIaUUpRoFUvIaBZHQEGDlOGj9GZ1fZQoaAZoCWgPQwi6EKs/wrDrv5SGlFKUaBVLyGgWR0BCSxN7BwdbdX2UKGgGaAloD0MI9GqA0tBvbsCUhpRSlGgVS8hoFkdAQw97fHggo3V9lChoBmgJaA9DCP7XuWkz2V3AlIaUUpRoFUvIaBZHQEPTP+n62v11fZQoaAZoCWgPQwgd6KG2DeMBwJSGlFKUaBVLyGgWR0BEl+WGATZhdX2UKGgGaAloD0MIpu1fWWnfXsCUhpRSlGgVS8hoFkdARV4bbUPQOXV9lChoBmgJaA9DCMH+69y0nW/AlIaUUpRoFUvIaBZHQEYuLl3hXKd1fZQoaAZoCWgPQwil2NE4VJhuwJSGlFKUaBVLyGgWR0BHABQWN3nqdX2UKGgGaAloD0MITKq2m+BaXcCUhpRSlGgVS8hoFkdAR9F/vv0AcXV9lChoBmgJaA9DCKYqbXENWWDAlIaUUpRoFUvIaBZHQEidLOiWVu91fZQoaAZoCWgPQwifA8sRMlD3v5SGlFKUaBVLyGgWR0BJZ8+RoysTdX2UKGgGaAloD0MI0xHAzWInb8CUhpRSlGgVS8hoFkdASi3H/95yEXV9lChoBmgJaA9DCBbcD3jgdWzAlIaUUpRoFUvIaBZHQErxyimEXch1fZQoaAZoCWgPQwjoaiv2l3xfwJSGlFKUaBVLyGgWR0BLtTGYKIBSdX2UKGgGaAloD0MIJNQMqaL4AcCUhpRSlGgVS8hoFkdATH9XV9Wp63V9lChoBmgJaA9DCAJGlzeHUl7AlIaUUpRoFUvIaBZHQE1MURnOB191fZQoaAZoCWgPQwglyXN9H35fwJSGlFKUaBVLyGgWR0BOHZTQ3PzGdX2UKGgGaAloD0MIOZojK78VXsCUhpRSlGgVS8hoFkdATuuTq0MPSXV9lChoBmgJaA9DCDmbjgBux1/AlIaUUpRoFUvIaBZHQE+2NT987ZF1fZQoaAZoCWgPQwgogjgPJ/D8v5SGlFKUaBVLyGgWR0BQQKTKT0QLdX2UKGgGaAloD0MIti+gF+4eX8CUhpRSlGgVS8hoFkdAUKTrmhdt23V9lChoBmgJaA9DCPhPN1DgeF7AlIaUUpRoFUvIaBZHQFEGxYJVsDZ1fZQoaAZoCWgPQwj0xHO2gGNtwJSGlFKUaBVLyGgWR0BRbFjqfOD8dX2UKGgGaAloD0MIEayqlx9ydMCUhpRSlGgVS8hoFkdAUdIGqxTsIHV9lChoBmgJaA9DCI5aYfpeQ17AlIaUUpRoFUvIaBZHQFI3P3i704B1fZQoaAZoCWgPQwiT/8nfvehcwJSGlFKUaBVLyGgWR0BSnxjBl+VkdX2UKGgGaAloD0MI2UKQgxI5X8CUhpRSlGgVS8hoFkdAUwfo8p1A7nV9lChoBmgJaA9DCCQNbmsLcmzAlIaUUpRoFUvIaBZHQFNtlqrR0EJ1fZQoaAZoCWgPQwjpZRTLLX5ewJSGlFKUaBVLyGgWR0BT0zQqqfe2dX2UKGgGaAloD0MIxsIQOX1QXsCUhpRSlGgVS8hoFkdAVDiEGqxTsXV9lChoBmgJaA9DCIgQV87em23AlIaUUpRoFUvIaBZHQFSaz4UN8Vp1fZQoaAZoCWgPQwjH9e/6zDBdwJSGlFKUaBVLyGgWR0BU/fJeVs1sdX2UKGgGaAloD0MIjpJX55gtbsCUhpRSlGgVS8hoFkdAVWLKhcqvvHV9lChoBmgJaA9DCBcOhGQBs1/AlIaUUpRoFUvIaBZHQFXHkMCtA9p1fZQoaAZoCWgPQwhu2ozTELULwJSGlFKUaBVLyGgWR0BWLTUutfXxdX2UKGgGaAloD0MI0VeQZiya77+UhpRSlGgVS8hoFkdAVpITVUdaMnV9lChoBmgJaA9DCEzfawiOjF7AlIaUUpRoFUvIaBZHQFbwE9Mbm2d1fZQoaAZoCWgPQwgROX09XyFfwJSGlFKUaBVLyGgWR0BXSYA4n4O+dX2UKGgGaAloD0MIY7g6AGLpbcCUhpRSlGgVS8hoFkdAV6oymALApXV9lChoBmgJaA9DCMReKGA77m3AlIaUUpRoFUvIaBZHQFgQUrkKeCl1fZQoaAZoCWgPQwgYtJCA0aZcwJSGlFKUaBVLyGgWR0BYdboSteUqdX2UKGgGaAloD0MIaTo7GRzlA8CUhpRSlGgVS8hoFkdAWNqcvugHvHV9lChoBmgJaA9DCAt8Rbde2V3AlIaUUpRoFUvIaBZHQFk90wJw84h1fZQoaAZoCWgPQwhq3JvfMDZdwJSGlFKUaBVLyGgWR0BZn5X6qKgqdX2UKGgGaAloD0MIJbN6h9sh6b+UhpRSlGgVS8hoFkdAWgNkf9xZMnV9lChoBmgJaA9DCGBZaVIK1V3AlIaUUpRoFUvIaBZHQFpn+H8CPp91fZQoaAZoCWgPQwg4glSKHbRewJSGlFKUaBVLyGgWR0BaywwCbMHKdX2UKGgGaAloD0MI4xx1dFyLXsCUhpRSlGgVS8hoFkdAWy+Ww/xDs3V9lChoBmgJaA9DCNumeFxUyl7AlIaUUpRoFUvIaBZHQFuUxSYPXkJ1fZQoaAZoCWgPQwiw479AECDdv5SGlFKUaBVLyGgWR0Bb+RH09QoDdX2UKGgGaAloD0MIWfs726NPX8CUhpRSlGgVS8hoFkdAXFu3CsOoYXV9lChoBmgJaA9DCDY8vVKWqFzAlIaUUpRoFUvIaBZHQFzAA3T/hl11fZQoaAZoCWgPQwgqxvmbUFxdwJSGlFKUaBVLyGgWR0BdIHCTEBKddX2UKGgGaAloD0MIf2snSkKabsCUhpRSlGgVS8hoFkdAXYORU3n6mHV9lChoBmgJaA9DCMgL6fAQsF7AlIaUUpRoFUvIaBZHQF3odC3PRiR1fZQoaAZoCWgPQwiNeohGd55ewJSGlFKUaBVLyGgWR0BeUM9bHIZJdX2UKGgGaAloD0MIWwndJXFRb8CUhpRSlGgVS8hoFkdAXrXBJqZc9nV9lChoBmgJaA9DCE0xB0FHQ17AlIaUUpRoFUvIaBZHQF8Z/+bVjI91fZQoaAZoCWgPQwgU56ij40pfwJSGlFKUaBVLyGgWR0BffAC4jKPodX2UKGgGaAloD0MIkPY/wFrIXsCUhpRSlGgVS8hoFkdAX90YixFAmnV9lChoBmgJaA9DCFtgj4kU8G3AlIaUUpRoFUvIaBZHQGAgGKZUkv91fZQoaAZoCWgPQwhqiZXRyOlewJSGlFKUaBVLyGgWR0BgUoTwlSjydX2UKGgGaAloD0MInWfsSzaDX8CUhpRSlGgVS8hoFkdAYIVRtP557nV9lChoBmgJaA9DCN/CuvHuKADAlIaUUpRoFUvIaBZHQGC5nV5KODJ1fZQoaAZoCWgPQwhrRDAOLmFewJSGlFKUaBVLyGgWR0Bg7gsoUi6hdX2UKGgGaAloD0MIokYhyaw1X8CUhpRSlGgVS8hoFkdAYSCkSmIj4nV9lChoBmgJaA9DCGnIeJRK1WzAlIaUUpRoFUvIaBZHQGFR9KVY6n11fZQoaAZoCWgPQwjh0Fs8vKp0wJSGlFKUaBVLyGgWR0BhgzMV1wHadX2UKGgGaAloD0MIAFXcuEWta8CUhpRSlGgVS8hoFkdAYbRkHUtqYnV9lChoBmgJaA9DCOvhy0QRbV7AlIaUUpRoFUvIaBZHQGHmxtHhCMR1fZQoaAZoCWgPQwjSOqqaoFpuwJSGlFKUaBVLyGgWR0BiGxW912aEdX2UKGgGaAloD0MImKYIcPoyYMCUhpRSlGgVS8hoFkdAYk+hf0Eov3V9lChoBmgJaA9DCL39uWjIz13AlIaUUpRoFUvIaBZHQGKCumzjWCp1fZQoaAZoCWgPQwiFP8ObNTj2v5SGlFKUaBVLyGgWR0BitH6dlNDddX2UKGgGaAloD0MI443MI38FX8CUhpRSlGgVS8hoFkdAYuXHtF8XvnV9lChoBmgJaA9DCDTaqiSyF1/AlIaUUpRoFUvIaBZHQGMXBKL876p1fZQoaAZoCWgPQwjk2lAxzilfwJSGlFKUaBVLyGgWR0BjSK1eBxxUdX2UKGgGaAloD0MIVRLZB1nWEcCUhpRSlGgVS8hoFkdAY3uwfQrtmnV9lChoBmgJaA9DCHCxogbTyF/AlIaUUpRoFUvIaBZHQGOwFs54nnd1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 19900,
    "buffer_size": 1,
    "batch_size": 256,
    "learning_starts": 100,
    "tau": 0.005,
    "gamma": 0.99,
    "gradient_steps": 1,
    "optimize_memory_usage": false,
    "replay_buffer_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
        "__module__": "stable_baselines3.common.buffers",
        "__doc__": "\n    Replay buffer used in off-policy algorithms like SAC/TD3.\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        of the replay buffer which reduces by almost a factor two the memory used,\n        at a cost of more complexity.\n        See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n        and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n        Cannot be used in combination with handle_timeout_termination.\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ",
        "__init__": "<function ReplayBuffer.__init__ at 0x7fe9a766a430>",
        "add": "<function ReplayBuffer.add at 0x7fe9a766a4c0>",
        "sample": "<function ReplayBuffer.sample at 0x7fe9a766a550>",
        "_get_samples": "<function ReplayBuffer._get_samples at 0x7fe9a766a5e0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fe9a7660b80>"
    },
    "replay_buffer_kwargs": {},
    "train_freq": {
        ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
        ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
    },
    "use_sde_at_warmup": false,
    "target_entropy": -1.0,
    "ent_coef": "auto",
    "target_update_interval": 1,
    "batch_norm_stats": [],
    "batch_norm_stats_target": []
}