{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "reset_noise": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe9a7617e00>" }, "verbose": 1, "policy_kwargs": { "use_sde": false }, "observation_space": { ":type:": "", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [ 3 ], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [ 1 ], "low": "[-2.]", "high": "[2.]", "bounded_below": "[ True]", "bounded_above": "[ True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1670944096289797974, "learning_rate": { ":type:": "", ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "tensorboard_log": "runs/Pendulum-v1__sac__1194698695__1670944094/Pendulum-v1", "lr_schedule": { ":type:": "", ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4=" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAP69fj8mxco90yTnvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4=" }, "_episode_num": 100, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrRbYY/IemsCUhpRSlIwBbJRLyIwBdJRHP/2TA31jAi51fZQoaAZoCWgPQwhhwmhWBoicwJSGlFKUaBVLyGgWR0ALbiVB2OhkdX2UKGgGaAloD0MIe737400vnMCUhpRSlGgVS8hoFkdAE9BikO7QLXV9lChoBmgJaA9DCMSvWMNVSZLAlIaUUpRoFUvIaBZHQBoGCyyD7Il1fZQoaAZoCWgPQwgqqRPQJK+WwJSGlFKUaBVLyGgWR0AgQZb6guh9dX2UKGgGaAloD0MIiKBq9NqkmMCUhpRSlGgVS8hoFkdAI4MFUyYXwnV9lChoBmgJaA9DCEEsmznET5bAlIaUUpRoFUvIaBZHQCatjwx33Yd1fZQoaAZoCWgPQwjohqbslIuSwJSGlFKUaBVLyGgWR0Ap1pwCKaXsdX2UKGgGaAloD0MISKMCJ3vHksCUhpRSlGgVS8hoFkdALQFUp/gBLnV9lChoBmgJaA9DCJ+RCI3QfJDAlIaUUpRoFUvIaBZHQDAOSLZSNwR1fZQoaAZoCWgPQwhvtyQHrFGQwJSGlFKUaBVLyGgWR0AxnbmEGqxUdX2UKGgGaAloD0MI6BN5khS/isCUhpRSlGgVS8hoFkdAMzT850bLlnV9lChoBmgJaA9DCJZZhGJrWIDAlIaUUpRoFUvIaBZHQDTKT4cm0E51fZQoaAZoCWgPQwjKpIY2AM1gwJSGlFKUaBVLyGgWR0A2VZpi7TUidX2UKGgGaAloD0MIsrrVc9K8YMCUhpRSlGgVS8hoFkdAN+pPVNHpbHV9lChoBmgJaA9DCJVGzOxzSovAlIaUUpRoFUvIaBZHQDl/eP7vXsh1fZQoaAZoCWgPQwiut81UiLlxwJSGlFKUaBVLyGgWR0A7FPHDJlredX2UKGgGaAloD0MISGsMOiFUYMCUhpRSlGgVS8hoFkdAPK3X2/SH/XV9lChoBmgJaA9DCERSCyWTSGDAlIaUUpRoFUvIaBZHQD5FAcDKYAt1fZQoaAZoCWgPQwj+Q/rt68JtwJSGlFKUaBVLyGgWR0A/25Ec81XOdX2UKGgGaAloD0MIPUSjO4gd8L+UhpRSlGgVS8hoFkdAQLjsF+uvEHV9lChoBmgJaA9DCGQ730+NAGDAlIaUUpRoFUvIaBZHQEGDlOGj9GZ1fZQoaAZoCWgPQwi6EKs/wrDrv5SGlFKUaBVLyGgWR0BCSxN7BwdbdX2UKGgGaAloD0MI9GqA0tBvbsCUhpRSlGgVS8hoFkdAQw97fHggo3V9lChoBmgJaA9DCP7XuWkz2V3AlIaUUpRoFUvIaBZHQEPTP+n62v11fZQoaAZoCWgPQwgd6KG2DeMBwJSGlFKUaBVLyGgWR0BEl+WGATZhdX2UKGgGaAloD0MIpu1fWWnfXsCUhpRSlGgVS8hoFkdARV4bbUPQOXV9lChoBmgJaA9DCMH+69y0nW/AlIaUUpRoFUvIaBZHQEYuLl3hXKd1fZQoaAZoCWgPQwil2NE4VJhuwJSGlFKUaBVLyGgWR0BHABQWN3nqdX2UKGgGaAloD0MITKq2m+BaXcCUhpRSlGgVS8hoFkdAR9F/vv0AcXV9lChoBmgJaA9DCKYqbXENWWDAlIaUUpRoFUvIaBZHQEidLOiWVu91fZQoaAZoCWgPQwifA8sRMlD3v5SGlFKUaBVLyGgWR0BJZ8+RoysTdX2UKGgGaAloD0MI0xHAzWInb8CUhpRSlGgVS8hoFkdASi3H/95yEXV9lChoBmgJaA9DCBbcD3jgdWzAlIaUUpRoFUvIaBZHQErxyimEXch1fZQoaAZoCWgPQwjoaiv2l3xfwJSGlFKUaBVLyGgWR0BLtTGYKIBSdX2UKGgGaAloD0MIJNQMqaL4AcCUhpRSlGgVS8hoFkdATH9XV9Wp63V9lChoBmgJaA9DCAJGlzeHUl7AlIaUUpRoFUvIaBZHQE1MURnOB191fZQoaAZoCWgPQwglyXN9H35fwJSGlFKUaBVLyGgWR0BOHZTQ3PzGdX2UKGgGaAloD0MIOZojK78VXsCUhpRSlGgVS8hoFkdATuuTq0MPSXV9lChoBmgJaA9DCDmbjgBux1/AlIaUUpRoFUvIaBZHQE+2NT987ZF1fZQoaAZoCWgPQwgogjgPJ/D8v5SGlFKUaBVLyGgWR0BQQKTKT0QLdX2UKGgGaAloD0MIti+gF+4eX8CUhpRSlGgVS8hoFkdAUKTrmhdt23V9lChoBmgJaA9DCPhPN1DgeF7AlIaUUpRoFUvIaBZHQFEGxYJVsDZ1fZQoaAZoCWgPQwj0xHO2gGNtwJSGlFKUaBVLyGgWR0BRbFjqfOD8dX2UKGgGaAloD0MIEayqlx9ydMCUhpRSlGgVS8hoFkdAUdIGqxTsIHV9lChoBmgJaA9DCI5aYfpeQ17AlIaUUpRoFUvIaBZHQFI3P3i704B1fZQoaAZoCWgPQwiT/8nfvehcwJSGlFKUaBVLyGgWR0BSnxjBl+VkdX2UKGgGaAloD0MI2UKQgxI5X8CUhpRSlGgVS8hoFkdAUwfo8p1A7nV9lChoBmgJaA9DCCQNbmsLcmzAlIaUUpRoFUvIaBZHQFNtlqrR0EJ1fZQoaAZoCWgPQwjpZRTLLX5ewJSGlFKUaBVLyGgWR0BT0zQqqfe2dX2UKGgGaAloD0MIxsIQOX1QXsCUhpRSlGgVS8hoFkdAVDiEGqxTsXV9lChoBmgJaA9DCIgQV87em23AlIaUUpRoFUvIaBZHQFSaz4UN8Vp1fZQoaAZoCWgPQwjH9e/6zDBdwJSGlFKUaBVLyGgWR0BU/fJeVs1sdX2UKGgGaAloD0MIjpJX55gtbsCUhpRSlGgVS8hoFkdAVWLKhcqvvHV9lChoBmgJaA9DCBcOhGQBs1/AlIaUUpRoFUvIaBZHQFXHkMCtA9p1fZQoaAZoCWgPQwhu2ozTELULwJSGlFKUaBVLyGgWR0BWLTUutfXxdX2UKGgGaAloD0MI0VeQZiya77+UhpRSlGgVS8hoFkdAVpITVUdaMnV9lChoBmgJaA9DCEzfawiOjF7AlIaUUpRoFUvIaBZHQFbwE9Mbm2d1fZQoaAZoCWgPQwgROX09XyFfwJSGlFKUaBVLyGgWR0BXSYA4n4O+dX2UKGgGaAloD0MIY7g6AGLpbcCUhpRSlGgVS8hoFkdAV6oymALApXV9lChoBmgJaA9DCMReKGA77m3AlIaUUpRoFUvIaBZHQFgQUrkKeCl1fZQoaAZoCWgPQwgYtJCA0aZcwJSGlFKUaBVLyGgWR0BYdboSteUqdX2UKGgGaAloD0MIaTo7GRzlA8CUhpRSlGgVS8hoFkdAWNqcvugHvHV9lChoBmgJaA9DCAt8Rbde2V3AlIaUUpRoFUvIaBZHQFk90wJw84h1fZQoaAZoCWgPQwhq3JvfMDZdwJSGlFKUaBVLyGgWR0BZn5X6qKgqdX2UKGgGaAloD0MIJbN6h9sh6b+UhpRSlGgVS8hoFkdAWgNkf9xZMnV9lChoBmgJaA9DCGBZaVIK1V3AlIaUUpRoFUvIaBZHQFpn+H8CPp91fZQoaAZoCWgPQwg4glSKHbRewJSGlFKUaBVLyGgWR0BaywwCbMHKdX2UKGgGaAloD0MI4xx1dFyLXsCUhpRSlGgVS8hoFkdAWy+Ww/xDs3V9lChoBmgJaA9DCNumeFxUyl7AlIaUUpRoFUvIaBZHQFuUxSYPXkJ1fZQoaAZoCWgPQwiw479AECDdv5SGlFKUaBVLyGgWR0Bb+RH09QoDdX2UKGgGaAloD0MIWfs726NPX8CUhpRSlGgVS8hoFkdAXFu3CsOoYXV9lChoBmgJaA9DCDY8vVKWqFzAlIaUUpRoFUvIaBZHQFzAA3T/hl11fZQoaAZoCWgPQwgqxvmbUFxdwJSGlFKUaBVLyGgWR0BdIHCTEBKddX2UKGgGaAloD0MIf2snSkKabsCUhpRSlGgVS8hoFkdAXYORU3n6mHV9lChoBmgJaA9DCMgL6fAQsF7AlIaUUpRoFUvIaBZHQF3odC3PRiR1fZQoaAZoCWgPQwiNeohGd55ewJSGlFKUaBVLyGgWR0BeUM9bHIZJdX2UKGgGaAloD0MIWwndJXFRb8CUhpRSlGgVS8hoFkdAXrXBJqZc9nV9lChoBmgJaA9DCE0xB0FHQ17AlIaUUpRoFUvIaBZHQF8Z/+bVjI91fZQoaAZoCWgPQwgU56ij40pfwJSGlFKUaBVLyGgWR0BffAC4jKPodX2UKGgGaAloD0MIkPY/wFrIXsCUhpRSlGgVS8hoFkdAX90YixFAmnV9lChoBmgJaA9DCFtgj4kU8G3AlIaUUpRoFUvIaBZHQGAgGKZUkv91fZQoaAZoCWgPQwhqiZXRyOlewJSGlFKUaBVLyGgWR0BgUoTwlSjydX2UKGgGaAloD0MInWfsSzaDX8CUhpRSlGgVS8hoFkdAYIVRtP557nV9lChoBmgJaA9DCN/CuvHuKADAlIaUUpRoFUvIaBZHQGC5nV5KODJ1fZQoaAZoCWgPQwhrRDAOLmFewJSGlFKUaBVLyGgWR0Bg7gsoUi6hdX2UKGgGaAloD0MIokYhyaw1X8CUhpRSlGgVS8hoFkdAYSCkSmIj4nV9lChoBmgJaA9DCGnIeJRK1WzAlIaUUpRoFUvIaBZHQGFR9KVY6n11fZQoaAZoCWgPQwjh0Fs8vKp0wJSGlFKUaBVLyGgWR0BhgzMV1wHadX2UKGgGaAloD0MIAFXcuEWta8CUhpRSlGgVS8hoFkdAYbRkHUtqYnV9lChoBmgJaA9DCOvhy0QRbV7AlIaUUpRoFUvIaBZHQGHmxtHhCMR1fZQoaAZoCWgPQwjSOqqaoFpuwJSGlFKUaBVLyGgWR0BiGxW912aEdX2UKGgGaAloD0MImKYIcPoyYMCUhpRSlGgVS8hoFkdAYk+hf0Eov3V9lChoBmgJaA9DCL39uWjIz13AlIaUUpRoFUvIaBZHQGKCumzjWCp1fZQoaAZoCWgPQwiFP8ObNTj2v5SGlFKUaBVLyGgWR0BitH6dlNDddX2UKGgGaAloD0MI443MI38FX8CUhpRSlGgVS8hoFkdAYuXHtF8XvnV9lChoBmgJaA9DCDTaqiSyF1/AlIaUUpRoFUvIaBZHQGMXBKL876p1fZQoaAZoCWgPQwjk2lAxzilfwJSGlFKUaBVLyGgWR0BjSK1eBxxUdX2UKGgGaAloD0MIVRLZB1nWEcCUhpRSlGgVS8hoFkdAY3uwfQrtmnV9lChoBmgJaA9DCHCxogbTyF/AlIaUUpRoFUvIaBZHQGOwFs54nnd1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 19900, "buffer_size": 1, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe9a7660b80>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "target_entropy": -1.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [] }