Quentin Gallouédec
Initial commit
0487e87
raw
history blame
19.5 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
"__module__": "sb3_contrib.tqc.policies",
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function TQCPolicy.__init__ at 0x7fd9eb966670>",
"_build": "<function TQCPolicy._build at 0x7fd9eb966700>",
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fd9eb966790>",
"reset_noise": "<function TQCPolicy.reset_noise at 0x7fd9eb966820>",
"make_actor": "<function TQCPolicy.make_actor at 0x7fd9eb9668b0>",
"make_critic": "<function TQCPolicy.make_critic at 0x7fd9eb966940>",
"forward": "<function TQCPolicy.forward at 0x7fd9eb9669d0>",
"_predict": "<function TQCPolicy._predict at 0x7fd9eb966a60>",
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fd9eb966af0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fd9eb9690c0>"
},
"verbose": 1,
"policy_kwargs": {
"use_sde": false
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVgQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWiAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSxGFlIwBQ5R0lFKUjARoaWdolGgSKJaIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLEYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsRhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
17
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVNgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"dtype": "float32",
"_shape": [
6
],
"low": "[-1. -1. -1. -1. -1. -1.]",
"high": "[1. 1. 1. 1. 1. 1.]",
"bounded_below": "[ True True True True True True]",
"bounded_above": "[ True True True True True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1000000,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1676039143122195813,
"learning_rate": 0.0003,
"tensorboard_log": "runs/HalfCheetah-v3__tqc__308614917__1676039138/HalfCheetah-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAJzB6vVVlbS/cojkhHW/vz/WaZNyWo7wP+hlEycXd9I/As9c9bTw4j/rjK5wvGPwv4dtWDw/gNi/YNGzgEJy07+yIMJigDwpQBDMA3ik4Zs/MfUMt+7v8T+gz6EL3NzNP2jLV3JjA86/lljhrjkCCsAYJ0Vs6HL8P1XbEV28+PY/xe4yQxrZKMCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"
},
"_episode_num": 1000,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXkiHh9wcxkCUhpRSlIwBbJRN6AOMAXSUR0DblJMkLQXzdX2UKGgGaAloD0MIOdOE7f9qx0CUhpRSlGgVTegDaBZHQNucOyrYGt91fZQoaAZoCWgPQwh+G2K8wCDGQJSGlFKUaBVN6ANoFkdA26O/1EVnEnV9lChoBmgJaA9DCAosgClLBKZAlIaUUpRoFU3oA2gWR0Dbq55tygf2dX2UKGgGaAloD0MI3rBtUYYIx0CUhpRSlGgVTegDaBZHQNuzjGtyPuJ1fZQoaAZoCWgPQwj84ee/V+PGQJSGlFKUaBVN6ANoFkdA27uCtbcGknV9lChoBmgJaA9DCGaDTDJSTMZAlIaUUpRoFU3oA2gWR0Dbw1yPMjeLdX2UKGgGaAloD0MIyjfb3OzyxkCUhpRSlGgVTegDaBZHQNvLMSfL9uR1fZQoaAZoCWgPQwgpkq8EspmjQJSGlFKUaBVN6ANoFkdA29LF5iExqXV9lChoBmgJaA9DCMtneR7oAsdAlIaUUpRoFU3oA2gWR0Db2WzVEuxsdX2UKGgGaAloD0MIfGMIAEo1tkCUhpRSlGgVTegDaBZHQNvhGb9If8x1fZQoaAZoCWgPQwi6MT1hZ2jHQJSGlFKUaBVN6ANoFkdA2+kjSxZ+yHV9lChoBmgJaA9DCI+JlGZd18ZAlIaUUpRoFU3oA2gWR0Db8QUk1MufdX2UKGgGaAloD0MI3smnx6aVxkCUhpRSlGgVTegDaBZHQNv407VBlc11fZQoaAZoCWgPQwj5SbVPi4TGQJSGlFKUaBVN6ANoFkdA3ACo7dBSk3V9lChoBmgJaA9DCNOh0/OC1cZAlIaUUpRoFU3oA2gWR0DcCHiNhmXgdX2UKGgGaAloD0MIrdo1IdXpxkCUhpRSlGgVTegDaBZHQNwQVyZ8a4t1fZQoaAZoCWgPQwiuRnalMa/GQJSGlFKUaBVN6ANoFkdA3BhE40dilXV9lChoBmgJaA9DCHQjLCryYsZAlIaUUpRoFU3oA2gWR0DcIDsoTfzjdX2UKGgGaAloD0MI0At3LtIgx0CUhpRSlGgVTegDaBZHQNwoPU0rK/51fZQoaAZoCWgPQwjrHtlctYfGQJSGlFKUaBVN6ANoFkdA3DAgmwJPZnV9lChoBmgJaA9DCL6Dnzgq2sZAlIaUUpRoFU3oA2gWR0DcOBe8AaNudX2UKGgGaAloD0MIFD/G3O8Qx0CUhpRSlGgVTegDaBZHQNxAA7mlqJx1fZQoaAZoCWgPQwjvU1Vo5tbGQJSGlFKUaBVN6ANoFkdA3EbMeN1hcHV9lChoBmgJaA9DCKa5FcLMmcZAlIaUUpRoFU3oA2gWR0DcThmIxgy/dX2UKGgGaAloD0MI9S1zuhbyxkCUhpRSlGgVTegDaBZHQNxaZilBQep1fZQoaAZoCWgPQwg2dLM/ME7GQJSGlFKUaBVN6ANoFkdA3GHgyTpxFXV9lChoBmgJaA9DCHFXryIZ9cZAlIaUUpRoFU3oA2gWR0DcaN4kMTewdX2UKGgGaAloD0MIQ6m9iFzJxkCUhpRSlGgVTegDaBZHQNxwzrbtZ3d1fZQoaAZoCWgPQwiHURA83iLHQJSGlFKUaBVN6ANoFkdA3Hitfb9IgHV9lChoBmgJaA9DCAAeUaEw8MZAlIaUUpRoFU3oA2gWR0DcgJiLWI43dX2UKGgGaAloD0MISkT4F3OrxkCUhpRSlGgVTegDaBZHQNyIhxf8dgh1fZQoaAZoCWgPQwhwQEtXckfHQJSGlFKUaBVN6ANoFkdA3JB1aHsTnXV9lChoBmgJaA9DCJWdflDDbsdAlIaUUpRoFU3oA2gWR0DcmFonG828dX2UKGgGaAloD0MIonvWNTYCx0CUhpRSlGgVTegDaBZHQNyfJl5a/yp1fZQoaAZoCWgPQwg74LpirFPGQJSGlFKUaBVN6ANoFkdA3KWqJUHY6HV9lChoBmgJaA9DCGZLVkX2w8ZAlIaUUpRoFU3oA2gWR0DcrQKHSF4+dX2UKGgGaAloD0MI4ng+A04Ox0CUhpRSlGgVTegDaBZHQNy057mdRSB1fZQoaAZoCWgPQwi4zVSIk+m/QJSGlFKUaBVN6ANoFkdA3LzShL5AQnV9lChoBmgJaA9DCElm9Q6r2cZAlIaUUpRoFU3oA2gWR0DcxK/GLk0adX2UKGgGaAloD0MIQ8U4f+F4x0CUhpRSlGgVTegDaBZHQNzMrK+36RB1fZQoaAZoCWgPQwjkMm5qqmbHQJSGlFKUaBVN6ANoFkdA3NSeQfIS13V9lChoBmgJaA9DCGvwviprbMZAlIaUUpRoFU3oA2gWR0Dc3I/59E1EdX2UKGgGaAloD0MI0LTEypzgxkCUhpRSlGgVTegDaBZHQNzkhJGKAJ91fZQoaAZoCWgPQwiU+rK0TxXHQJSGlFKUaBVN6ANoFkdA3OxyV7x/eHV9lChoBmgJaA9DCEcDeAvWTsdAlIaUUpRoFU3oA2gWR0Dc8+j961LKdX2UKGgGaAloD0MIAYi7eqm5xkCUhpRSlGgVTegDaBZHQNz7ySOinHh1fZQoaAZoCWgPQwivzFt149HGQJSGlFKUaBVN6ANoFkdA3QO5fvWpZXV9lChoBmgJaA9DCBB5y9V3lLRAlIaUUpRoFU3oA2gWR0DdC6j+ee4DdX2UKGgGaAloD0MIsdzSal4+x0CUhpRSlGgVTegDaBZHQN0SOW/BWPt1fZQoaAZoCWgPQwg/NsmP2ifGQJSGlFKUaBVN6ANoFkdA3R2G3R5TqHV9lChoBmgJaA9DCKDE507ukcZAlIaUUpRoFU3oA2gWR0DdJMxZHNHIdX2UKGgGaAloD0MImN9pMpsuxkCUhpRSlGgVTegDaBZHQN0sIOP/7zl1fZQoaAZoCWgPQwjyfXGpVNXDQJSGlFKUaBVN6ANoFkdA3TQM2IO6NHV9lChoBmgJaA9DCPcBSG24F8dAlIaUUpRoFU3oA2gWR0DdO+2UliSadX2UKGgGaAloD0MI9+eiIYnoxkCUhpRSlGgVTegDaBZHQN1DyM2FWXF1fZQoaAZoCWgPQwgdIQN5xDbHQJSGlFKUaBVN6ANoFkdA3UvTof0VanV9lChoBmgJaA9DCGkB2lbHxcZAlIaUUpRoFU3oA2gWR0DdU7gWZZ0TdX2UKGgGaAloD0MICiyAKXuZxkCUhpRSlGgVTegDaBZHQN1bolj/dZd1fZQoaAZoCWgPQwjuCKcFUffGQJSGlFKUaBVN6ANoFkdA3WOJ8Jlar3V9lChoBmgJaA9DCLNAu0Na/sZAlIaUUpRoFU3oA2gWR0Dda4yMm4RVdX2UKGgGaAloD0MIaXBbWz7JxkCUhpRSlGgVTegDaBZHQN1zfpVbRnh1fZQoaAZoCWgPQwiCyY0iD7jGQJSGlFKUaBVN6ANoFkdA3XtgbzbvgHV9lChoBmgJaA9DCPLpsS0Z9MZAlIaUUpRoFU3oA2gWR0DdguEehf0FdX2UKGgGaAloD0MI/KawUlMrxkCUhpRSlGgVTegDaBZHQN2KwMUypJh1fZQoaAZoCWgPQwgQejarmI3GQJSGlFKUaBVN6ANoFkdA3ZKeyIHkcXV9lChoBmgJaA9DCIRm1707f8ZAlIaUUpRoFU3oA2gWR0DdmpUW+GoKdX2UKGgGaAloD0MI3Qa136wux0CUhpRSlGgVTegDaBZHQN2iguLBKth1fZQoaAZoCWgPQwhdNjrns/zGQJSGlFKUaBVN6ANoFkdA3ap6WjGkvnV9lChoBmgJaA9DCK01lNp1QsNAlIaUUpRoFU3oA2gWR0DdslSJyhi9dX2UKGgGaAloD0MIrmad8ec9x0CUhpRSlGgVTegDaBZHQN26No7V8Tl1fZQoaAZoCWgPQwhT6/1Gk93GQJSGlFKUaBVN6ANoFkdA3cIizrNW2nV9lChoBmgJaA9DCJOq7SZswcdAlIaUUpRoFU3oA2gWR0DdyhxK/VRUdX2UKGgGaAloD0MIB3jSwsEWx0CUhpRSlGgVTegDaBZHQN3R8Ar+YMR1fZQoaAZoCWgPQwjSGK2jTBrHQJSGlFKUaBVN6ANoFkdA3dmNJnxri3V9lChoBmgJaA9DCGtmLQU+tsZAlIaUUpRoFU3oA2gWR0Dd44e0TlDGdX2UKGgGaAloD0MIDi2ynRcKx0CUhpRSlGgVTegDaBZHQN3rIL3TNMZ1fZQoaAZoCWgPQwhCWmPQ9YPHQJSGlFKUaBVN6ANoFkdA3fJo9dNWVHV9lChoBmgJaA9DCPw07s3TP8dAlIaUUpRoFU3oA2gWR0Dd+lkiyIHkdX2UKGgGaAloD0MIoiQk0jDZxkCUhpRSlGgVTegDaBZHQN4CRthAnlZ1fZQoaAZoCWgPQwhYHM78JmHHQJSGlFKUaBVN6ANoFkdA3gokOIZZS3V9lChoBmgJaA9DCJgUH58yGsdAlIaUUpRoFU3oA2gWR0DeEZIbhm5EdX2UKGgGaAloD0MIPjxLkOUDx0CUhpRSlGgVTegDaBZHQN4ZGC48U211fZQoaAZoCWgPQwjK+zia18bGQJSGlFKUaBVN6ANoFkdA3iD+ZX+2mnV9lChoBmgJaA9DCIjX9Qsy+MZAlIaUUpRoFU3oA2gWR0DeKOPZnL7odX2UKGgGaAloD0MITg6fdMYxx0CUhpRSlGgVTegDaBZHQN4wv2XTmXB1fZQoaAZoCWgPQwiHFW75KuHGQJSGlFKUaBVN6ANoFkdA3jilwtJ4B3V9lChoBmgJaA9DCIEjgQbZLsdAlIaUUpRoFU3oA2gWR0DeQIX7k4m1dX2UKGgGaAloD0MIKJ1IMJO0xkCUhpRSlGgVTegDaBZHQN5IUK2nbZh1fZQoaAZoCWgPQwhJaTaP+wTHQJSGlFKUaBVN6ANoFkdA3lBLK/mDDnV9lChoBmgJaA9DCBKifEEbzMZAlIaUUpRoFU3oA2gWR0DeWDrgiu+zdX2UKGgGaAloD0MIAP2+fw1vxkCUhpRSlGgVTegDaBZHQN5gIeEVWS51fZQoaAZoCWgPQwikAFEwz+fGQJSGlFKUaBVN6ANoFkdA3mgHk3juKHV9lChoBmgJaA9DCJUp5iBIMMdAlIaUUpRoFU3oA2gWR0Deb+St6ol2dX2UKGgGaAloD0MIle6us+0Rx0CUhpRSlGgVTegDaBZHQN5315prULF1fZQoaAZoCWgPQwjEr1jD2+nFQJSGlFKUaBVN6ANoFkdA3n/T9qUNa3V9lChoBmgJaA9DCJ7qkJvLGMdAlIaUUpRoFU3oA2gWR0Deh7kM8YAKdX2UKGgGaAloD0MIxmzJqhgEn0CUhpRSlGgVTegDaBZHQN6PjfcWTHN1fZQoaAZoCWgPQwhF1a906hXHQJSGlFKUaBVN6ANoFkdA3pdwx33Yc3V9lChoBmgJaA9DCIjZy7YvmsZAlIaUUpRoFU3oA2gWR0Den1uivgWKdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 990000,
"buffer_size": 1,
"batch_size": 256,
"learning_starts": 10000,
"tau": 0.005,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7fd9ebdee5e0>",
"add": "<function ReplayBuffer.add at 0x7fd9ebdee670>",
"sample": "<function ReplayBuffer.sample at 0x7fd9ebdee700>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fd9ebdee790>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fd9ebde8500>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"target_entropy": -6.0,
"ent_coef": "auto",
"target_update_interval": 1,
"top_quantiles_to_drop_per_net": 2,
"batch_norm_stats": [],
"batch_norm_stats_target": []
}