Commit
·
0c417fd
1
Parent(s):
1ad1adc
Initial commit
Browse files- replay.mp4 +3 -0
- results.json +1 -1
- tqc-LiftCube-v0.zip +1 -1
- tqc-LiftCube-v0/data +7 -7
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1d976ba1faada64b15dfcddb46fce184836a329c65a5b4af5ec80f33448ba59
|
3 |
+
size 220552
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 5.5155896, "std_reward": 1.9174329601274307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-08T16:
|
|
|
1 |
+
{"mean_reward": 5.5155896, "std_reward": 1.9174329601274307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-08T16:56:24.632879"}
|
tqc-LiftCube-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3419898
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd7d75ef412e0da5b4112eb41cbd734a985b108c356d0cd4e273e2168b50db1c
|
3 |
size 3419898
|
tqc-LiftCube-v0/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
"__module__": "sb3_contrib.tqc.policies",
|
6 |
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
-
"__init__": "<function MultiInputPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -83,12 +83,12 @@
|
|
83 |
"__module__": "stable_baselines3.common.buffers",
|
84 |
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
|
85 |
"__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
86 |
-
"__init__": "<function DictReplayBuffer.__init__ at
|
87 |
-
"add": "<function DictReplayBuffer.add at
|
88 |
-
"sample": "<function DictReplayBuffer.sample at
|
89 |
-
"_get_samples": "<function DictReplayBuffer._get_samples at
|
90 |
"__abstractmethods__": "frozenset()",
|
91 |
-
"_abc_impl": "<_abc._abc_data object at
|
92 |
},
|
93 |
"replay_buffer_kwargs": {},
|
94 |
"train_freq": {
|
|
|
4 |
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
"__module__": "sb3_contrib.tqc.policies",
|
6 |
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7f1d96d0f370>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1d96d1f100>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
83 |
"__module__": "stable_baselines3.common.buffers",
|
84 |
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
|
85 |
"__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
86 |
+
"__init__": "<function DictReplayBuffer.__init__ at 0x7f1d976cdf30>",
|
87 |
+
"add": "<function DictReplayBuffer.add at 0x7f1d976cdfc0>",
|
88 |
+
"sample": "<function DictReplayBuffer.sample at 0x7f1d976ce050>",
|
89 |
+
"_get_samples": "<function DictReplayBuffer._get_samples at 0x7f1d976ce0e0>",
|
90 |
"__abstractmethods__": "frozenset()",
|
91 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1d976bb900>"
|
92 |
},
|
93 |
"replay_buffer_kwargs": {},
|
94 |
"train_freq": {
|