Quentin Gallouédec
Initial commit
1832c8e
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb422212ee0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb422212f70>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb422214040>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4222140d0>",
"_build": "<function ActorCriticPolicy._build at 0x7fb422214160>",
"forward": "<function ActorCriticPolicy.forward at 0x7fb4222141f0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb422214280>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb422214310>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fb4222143a0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb422214430>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4222144c0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb422214550>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fb422213580>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
"dtype": "float32",
"_shape": [
2
],
"low": "[-1. -1.]",
"high": "[1. 1.]",
"bounded_below": "[ True True]",
"bounded_above": "[ True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1001472,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1676720816644460760,
"learning_rate": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"tensorboard_log": "runs/Swimmer-v3__trpo__180298225__1676720812/Swimmer-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAO7lxgWNVLM/95+Aa0C3rr/SF4yDwZy0P8CzNUTj35k/6IHACxesoD+a3B6yngOtv1Davlt5wX2/9KJXN3shkL/EK2Z4sq+jP5BQBfEMSrI/DYlRVvyTq7/d3tr/3B+tv+wgECW8kpA/BLDT8vYboz8shMLJPEioPyQx/It1oLa/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwiGlIwBQ5R0lFKULg=="
},
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0014719999999999178,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKlWi7K3ZYkCUhpRSlIwBbJRN6AOMAXSUR0CdqASIxgy/dX2UKGgGaAloD0MIZmzoZn9gY0CUhpRSlGgVTegDaBZHQJ2n++rU9ZB1fZQoaAZoCWgPQwjovpzZLuZhQJSGlFKUaBVN6ANoFkdAnbUciOearnV9lChoBmgJaA9DCKKYvAFm5GJAlIaUUpRoFU3oA2gWR0CdtRPpY9xIdX2UKGgGaAloD0MIGyycpPkKY0CUhpRSlGgVTegDaBZHQJ3By6e5Fw11fZQoaAZoCWgPQwgZ529CIWFhQJSGlFKUaBVN6ANoFkdAncHDBdld1XV9lChoBmgJaA9DCBX/d0SF3GFAlIaUUpRoFU3oA2gWR0Cdzs0z0pVkdX2UKGgGaAloD0MIAU2EDU+MYUCUhpRSlGgVTegDaBZHQJ3OxJGvwE11fZQoaAZoCWgPQwhVLlT+tdFhQJSGlFKUaBVN6ANoFkdAnduA53kgfXV9lChoBmgJaA9DCLH4TWGlf2NAlIaUUpRoFU3oA2gWR0Cd23hG6PKddX2UKGgGaAloD0MILPNWXYcmY0CUhpRSlGgVTegDaBZHQJ3nK03Ov+x1fZQoaAZoCWgPQwiHFW75yKZjQJSGlFKUaBVN6ANoFkdAnecirxRVInV9lChoBmgJaA9DCD9uv3yytWJAlIaUUpRoFU3oA2gWR0Cd9K3FDOTrdX2UKGgGaAloD0MIIqgavRqzY0CUhpRSlGgVTegDaBZHQJ30pSQ5myx1fZQoaAZoCWgPQwiMg0vHHJBhQJSGlFKUaBVN6ANoFkdAnf9psoDxLHV9lChoBmgJaA9DCPNzQ1P21mJAlIaUUpRoFU3oA2gWR0Cd/2EQ5FPSdX2UKGgGaAloD0MIibSNP1HHY0CUhpRSlGgVTegDaBZHQJ4M+WY4Qz11fZQoaAZoCWgPQwhrZFdaRixjQJSGlFKUaBVN6ANoFkdAngzwy2x6fXV9lChoBmgJaA9DCLG/7J483mJAlIaUUpRoFU3oA2gWR0CeHF5oGpuNdX2UKGgGaAloD0MIhiAHJcwRY0CUhpRSlGgVTegDaBZHQJ4cVcTrVvx1fZQoaAZoCWgPQwgi36XUJeVjQJSGlFKUaBVN6ANoFkdAnitzwlSjxnV9lChoBmgJaA9DCECJz51gvWNAlIaUUpRoFU3oA2gWR0CeK2se4kNXdX2UKGgGaAloD0MIg/qWOV2bY0CUhpRSlGgVTegDaBZHQJ46480UGml1fZQoaAZoCWgPQwg34V6ZNxdjQJSGlFKUaBVN6ANoFkdAnjrbO/tY0XV9lChoBmgJaA9DCEDCMGDJzGNAlIaUUpRoFU3oA2gWR0CeZApoK2KEdX2UKGgGaAloD0MISWb1DrdLYkCUhpRSlGgVTegDaBZHQJ5kAcU/OdJ1fZQoaAZoCWgPQwje5/ho8SdjQJSGlFKUaBVN6ANoFkdAnnIa1gH/tXV9lChoBmgJaA9DCO25TE0CgGJAlIaUUpRoFU3oA2gWR0CechI4VARkdX2UKGgGaAloD0MIqOFbWLeIY0CUhpRSlGgVTegDaBZHQJ6AGkIomXx1fZQoaAZoCWgPQwjV52or9pVjQJSGlFKUaBVN6ANoFkdAnoARoVVPvnV9lChoBmgJaA9DCN2WyAXn1GFAlIaUUpRoFU3oA2gWR0Cejn91EE1VdX2UKGgGaAloD0MIuAchIN/CYUCUhpRSlGgVTegDaBZHQJ6Odtk4FRp1fZQoaAZoCWgPQwj4+8VsSQliQJSGlFKUaBVN6ANoFkdAnp5IptrKvHV9lChoBmgJaA9DCIf58gJsrWNAlIaUUpRoFU3oA2gWR0CenkAMUh3adX2UKGgGaAloD0MI6MHdWTuzY0CUhpRSlGgVTegDaBZHQJ6s6wC8vmJ1fZQoaAZoCWgPQwhSmPc4U1xjQJSGlFKUaBVN6ANoFkdAnqziW/rSmnV9lChoBmgJaA9DCPm9TX/2w2NAlIaUUpRoFU3oA2gWR0Ceuv7lq8DkdX2UKGgGaAloD0MIc77Ye3HSY0CUhpRSlGgVTegDaBZHQJ669krf+CN1fZQoaAZoCWgPQwjUnSees69hQJSGlFKUaBVN6ANoFkdAnsPL+kxh2HV9lChoBmgJaA9DCLx4P24/mGNAlIaUUpRoFU3oA2gWR0Cew8NZNfw7dX2UKGgGaAloD0MIkKD4MeZtY0CUhpRSlGgVTegDaBZHQJ7RZjXnQpp1fZQoaAZoCWgPQwimfXN/dZ1jQJSGlFKUaBVN6ANoFkdAntFdj5Kvm3V9lChoBmgJaA9DCMyXF2Aft2FAlIaUUpRoFU3oA2gWR0Ce3fVwgkkbdX2UKGgGaAloD0MIHxFTIgnPYkCUhpRSlGgVTegDaBZHQJ7d7MzMzM11fZQoaAZoCWgPQwjU7lcBvv1jQJSGlFKUaBVN6ANoFkdAnuwbCvX9SHV9lChoBmgJaA9DCIAqbtxiC2NAlIaUUpRoFU3oA2gWR0Ce7BK28Zk1dX2UKGgGaAloD0MIYMyWrAoGYkCUhpRSlGgVTegDaBZHQJ77BFiKBNF1fZQoaAZoCWgPQwje/8cJkyJjQJSGlFKUaBVN6ANoFkdAnvr7tJFspHV9lChoBmgJaA9DCLFNKhprG2NAlIaUUpRoFU3oA2gWR0CfC4I55qubdX2UKGgGaAloD0MIyAxUxr8sY0CUhpRSlGgVTegDaBZHQJ8LeZNO/L11fZQoaAZoCWgPQwjmzkwwHMxjQJSGlFKUaBVN6ANoFkdAnzZWWdEsrnV9lChoBmgJaA9DCAySPq2i8WFAlIaUUpRoFU3oA2gWR0CfNk23azu4dX2UKGgGaAloD0MIzzC1pY4RYkCUhpRSlGgVTegDaBZHQJ9FiJYT0xx1fZQoaAZoCWgPQwgTKGIRQ/liQJSGlFKUaBVN6ANoFkdAn0V/7vXsgXV9lChoBmgJaA9DCBISaRt/5WNAlIaUUpRoFU3oA2gWR0CfVFAH3UQTdX2UKGgGaAloD0MIvhWJCerZYkCUhpRSlGgVTegDaBZHQJ9UR2KVII51fZQoaAZoCWgPQwjn3y77dXFiQJSGlFKUaBVN6ANoFkdAn2Nw/oq0+nV9lChoBmgJaA9DCC3MQjsnS2JAlIaUUpRoFU3oA2gWR0CfY2hbW3BpdX2UKGgGaAloD0MIlgfpKfKTY0CUhpRSlGgVTegDaBZHQJ9yOPxQSBd1fZQoaAZoCWgPQwjaxwp+G+ljQJSGlFKUaBVN6ANoFkdAn3IwWrOqvXV9lChoBmgJaA9DCBy1wvQ9tmNAlIaUUpRoFU3oA2gWR0CfgA8yeqaPdX2UKGgGaAloD0MIH2easH2YYUCUhpRSlGgVTegDaBZHQJ+ABo6CDmN1fZQoaAZoCWgPQwgEyNCxg4piQJSGlFKUaBVN6ANoFkdAn4+Emplz2nV9lChoBmgJaA9DCICAtWrXVGJAlIaUUpRoFU3oA2gWR0Cfj3v1lGwzdX2UKGgGaAloD0MI7KLogY9MYkCUhpRSlGgVTegDaBZHQJ+dQ3R5TqB1fZQoaAZoCWgPQwi78lmeh/xhQJSGlFKUaBVN6ANoFkdAn5061Cw8n3V9lChoBmgJaA9DCMJR8uocZWJAlIaUUpRoFU3oA2gWR0CfrH5qM3qBdX2UKGgGaAloD0MI8DLDRtliY0CUhpRSlGgVTegDaBZHQJ+sddGAkLR1fZQoaAZoCWgPQwjGhm72h7xhQJSGlFKUaBVN6ANoFkdAn73OV1Oj7HV9lChoBmgJaA9DCOYg6GhVuWNAlIaUUpRoFU3oA2gWR0CfvcW69TP0dX2UKGgGaAloD0MIXHaIf1gKYkCUhpRSlGgVTegDaBZHQJ/MTuJDVpd1fZQoaAZoCWgPQwgl6C/0iNFjQJSGlFKUaBVN6ANoFkdAn8xGRigCfnV9lChoBmgJaA9DCGk50ENtnmNAlIaUUpRoFU3oA2gWR0Cf2rwfQrtmdX2UKGgGaAloD0MI6SYxCKxYY0CUhpRSlGgVTegDaBZHQJ/as3m3fAN1fZQoaAZoCWgPQwjq6o7FNk5jQJSGlFKUaBVN6ANoFkdAoAJ6FK02L3V9lChoBmgJaA9DCP/qcd9qAWJAlIaUUpRoFU3oA2gWR0CgAnXEZR8/dX2UKGgGaAloD0MIh4bFqGu5Y0CUhpRSlGgVTegDaBZHQKAJM4YJmd11fZQoaAZoCWgPQwg1fAvrxrZjQJSGlFKUaBVN6ANoFkdAoAkvNu+AVnV9lChoBmgJaA9DCNScvMgEqWNAlIaUUpRoFU3oA2gWR0CgEFOCoS+QdX2UKGgGaAloD0MIqN+FrVmQY0CUhpRSlGgVTegDaBZHQKAQTy925hB1fZQoaAZoCWgPQwjcnbXbrjViQJSGlFKUaBVN6ANoFkdAoBgAuCf6GnV9lChoBmgJaA9DCG4w1GGFumNAlIaUUpRoFU3oA2gWR0CgF/xlxwQ2dX2UKGgGaAloD0MI+Z/83Tu2Y0CUhpRSlGgVTegDaBZHQKAfOifxtpF1fZQoaAZoCWgPQwi2vHK97ZZhQJSGlFKUaBVN6ANoFkdAoB812Rq46XV9lChoBmgJaA9DCOvjoe9ufGNAlIaUUpRoFU3oA2gWR0CgJkR+rlvIdX2UKGgGaAloD0MIEALyJVS7YUCUhpRSlGgVTegDaBZHQKAmQC5mRNh1fZQoaAZoCWgPQwgnvASnPmBjQJSGlFKUaBVN6ANoFkdAoC3+J53Tu3V9lChoBmgJaA9DCASNmUQ90WNAlIaUUpRoFU3oA2gWR0CgLfnYQJ5WdX2UKGgGaAloD0MIN+Dzw4gdZECUhpRSlGgVTegDaBZHQKA0+6WgOBl1fZQoaAZoCWgPQwh8R40JMchjQJSGlFKUaBVN6ANoFkdAoDT3VLBbfXV9lChoBmgJaA9DCMi1oWIcOGNAlIaUUpRoFU3oA2gWR0CgPEaoESuhdX2UKGgGaAloD0MIYW2MnfC5Y0CUhpRSlGgVTegDaBZHQKA8Qlhw2l51fZQoaAZoCWgPQwjysFBrmtthQJSGlFKUaBVN6ANoFkdAoEN3IbOu73V9lChoBmgJaA9DCJhMFYxKNWJAlIaUUpRoFU3oA2gWR0CgQ3LORkmQdX2UKGgGaAloD0MIBWucTcd2YUCUhpRSlGgVTegDaBZHQKBKp7YTTOR1fZQoaAZoCWgPQwghkEsc+dFhQJSGlFKUaBVN6ANoFkdAoEqjZYgaFXV9lChoBmgJaA9DCMjvbfozgGJAlIaUUpRoFU3oA2gWR0CgUkoCuEEldX2UKGgGaAloD0MImIV2TjO4Y0CUhpRSlGgVTegDaBZHQKBSRbSJCSl1fZQoaAZoCWgPQwhGByRh3/RhQJSGlFKUaBVN6ANoFkdAoFlEuFpPAXV9lChoBmgJaA9DCLgiMUENsWNAlIaUUpRoFU3oA2gWR0CgWUBrWRRudWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 489,
"n_steps": 1024,
"gamma": 0.9999,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.0,
"max_grad_norm": 0.0,
"normalize_advantage": true,
"batch_size": 128,
"cg_max_steps": 25,
"cg_damping": 0.1,
"line_search_shrinking_factor": 0.8,
"line_search_max_iter": 10,
"target_kl": 0.01,
"n_critic_updates": 20,
"sub_sampling_factor": 1
}