Quentin Gallouédec commited on
Commit
b7d1559
1 Parent(s): 7477ee1

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Swimmer-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TRPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Swimmer-v3
16
+ type: Swimmer-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 125.73 +/- 6.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TRPO** Agent playing **Swimmer-v3**
25
+ This is a trained model of a **TRPO** agent playing **Swimmer-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo trpo --env Swimmer-v3 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo trpo --env Swimmer-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo trpo --env Swimmer-v3 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo trpo --env Swimmer-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo trpo --env Swimmer-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo trpo --env Swimmer-v3 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('cg_damping', 0.1),
67
+ ('cg_max_steps', 25),
68
+ ('gae_lambda', 0.95),
69
+ ('gamma', 0.9999),
70
+ ('learning_rate', 0.001),
71
+ ('n_critic_updates', 20),
72
+ ('n_envs', 2),
73
+ ('n_steps', 1024),
74
+ ('n_timesteps', 1000000.0),
75
+ ('normalize', True),
76
+ ('policy', 'MlpPolicy'),
77
+ ('sub_sampling_factor', 1),
78
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
79
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - trpo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Swimmer-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2649846326
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Swimmer-v3__trpo__2649846326__1676725012
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - cg_damping
5
+ - 0.1
6
+ - - cg_max_steps
7
+ - 25
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.9999
12
+ - - learning_rate
13
+ - 0.001
14
+ - - n_critic_updates
15
+ - 20
16
+ - - n_envs
17
+ - 2
18
+ - - n_steps
19
+ - 1024
20
+ - - n_timesteps
21
+ - 1000000.0
22
+ - - normalize
23
+ - true
24
+ - - policy
25
+ - MlpPolicy
26
+ - - sub_sampling_factor
27
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5937ff60834dd5b721cae3cefb382ae005f6fdce517eacd6bacd469f82f9f1e
3
+ size 1008783
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 125.73080809999999, "std_reward": 6.970977291206409, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T16:17:11.443030"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab071f731b9a333e451946144fe464a61c459533318dbd3de5a6a74fe5e3756d
3
+ size 42401
trpo-Swimmer-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79ddb353f1a131c847d8e2a017661590f1b31da1f80a9537a19c683de90f1d8b
3
+ size 106519
trpo-Swimmer-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
trpo-Swimmer-v3/data ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f67e53ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f67e53f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f67e55040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f67e550d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5f67e55160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5f67e551f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5f67e55280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f67e55310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5f67e553a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f67e55430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f67e554c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f67e55550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5f67e56380>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float64",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 2
43
+ ],
44
+ "low": "[-1. -1.]",
45
+ "high": "[1. 1.]",
46
+ "bounded_below": "[ True True]",
47
+ "bounded_above": "[ True True]",
48
+ "_np_random": "RandomState(MT19937)"
49
+ },
50
+ "n_envs": 1,
51
+ "num_timesteps": 1001472,
52
+ "_total_timesteps": 1000000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": 0,
55
+ "action_noise": null,
56
+ "start_time": 1676725016485543931,
57
+ "learning_rate": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
60
+ },
61
+ "tensorboard_log": "runs/Swimmer-v3__trpo__2649846326__1676725012/Swimmer-v3",
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
65
+ },
66
+ "_last_obs": null,
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAHdbiYU8y7O/gmZ09fewtr/Q9WAAQ9yjP6Q6sM2NK6Y/sNKr+GNWgT8wfN2bq7+nPygxILMZArE/4untP+set7/tZs/9dMSwv+j4pN4cBJ+/3BKySb0rtz9Y/GX8pNSMv91h4YILIK6/DREpl9pjqb+ish1EmzeyP7B7Ah7lhYm/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwiGlIwBQ5R0lFKULg=="
74
+ },
75
+ "_episode_num": 0,
76
+ "use_sde": false,
77
+ "sde_sample_freq": -1,
78
+ "_current_progress_remaining": -0.0014719999999999178,
79
+ "ep_info_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHHqLh3cOYECUhpRSlIwBbJRN6AOMAXSUR0CdxjOlwcYJdX2UKGgGaAloD0MI8N5RY0K5X0CUhpRSlGgVTegDaBZHQJ3GLVtoBaN1fZQoaAZoCWgPQwhBtixfl5peQJSGlFKUaBVN6ANoFkdAndWSL2pQ13V9lChoBmgJaA9DCDmaIys/FmBAlIaUUpRoFU3oA2gWR0Cd1YvicXnAdX2UKGgGaAloD0MIRNycSgYdXECUhpRSlGgVTegDaBZHQJ3k0yEcsDp1fZQoaAZoCWgPQwhCmNu93EBdQJSGlFKUaBVN6ANoFkdAneTMzZYgaHV9lChoBmgJaA9DCAkyAiocVGBAlIaUUpRoFU3oA2gWR0Cd9K5c1O0tdX2UKGgGaAloD0MImMCtu/laYECUhpRSlGgVTegDaBZHQJ30qBDohZB1fZQoaAZoCWgPQwi+a9CX3iVcQJSGlFKUaBVN6ANoFkdAngPTabnX/nV9lChoBmgJaA9DCJXYtb1dUGBAlIaUUpRoFU3oA2gWR0CeA80bLlmwdX2UKGgGaAloD0MIXtVZLbASXUCUhpRSlGgVTegDaBZHQJ4TTOX3QD51fZQoaAZoCWgPQwiYhuEjYghgQJSGlFKUaBVN6ANoFkdAnhNGl67dznV9lChoBmgJaA9DCPCJdar8bWBAlIaUUpRoFU3oA2gWR0CeIUEnLJS0dX2UKGgGaAloD0MIeAq5Us+aXUCUhpRSlGgVTegDaBZHQJ4hOtZFG5N1fZQoaAZoCWgPQwh1WyIXnJBfQJSGlFKUaBVN6ANoFkdAni/C0KJEY3V9lChoBmgJaA9DCNtugm+a6V9AlIaUUpRoFU3oA2gWR0CeL7yC4BmxdX2UKGgGaAloD0MIHlN3ZRdlXECUhpRSlGgVTegDaBZHQJ4+9PBSDRN1fZQoaAZoCWgPQwjieD4D6lBgQJSGlFKUaBVN6ANoFkdAnj7unqFAV3V9lChoBmgJaA9DCCSdgZGXAVxAlIaUUpRoFU3oA2gWR0CeTQ0bcXWOdX2UKGgGaAloD0MI0/caguMxX0CUhpRSlGgVTegDaBZHQJ5NBschkiF1fZQoaAZoCWgPQwhGelG73yxgQJSGlFKUaBVN6ANoFkdAnlz8pobn5nV9lChoBmgJaA9DCGraxTTTS11AlIaUUpRoFU3oA2gWR0CeXPZr56+ndX2UKGgGaAloD0MIZ9ZSQNoUYECUhpRSlGgVTegDaBZHQJ5sHQ7cO9Z1fZQoaAZoCWgPQwj3ksZoHQFcQJSGlFKUaBVN6ANoFkdAnmwW1lXii3V9lChoBmgJaA9DCOlILv8h/FtAlIaUUpRoFU3oA2gWR0Cel/4YaYNRdX2UKGgGaAloD0MIFsCUgYNZYECUhpRSlGgVTegDaBZHQJ6X98v24/h1fZQoaAZoCWgPQwj+utOdJ0hgQJSGlFKUaBVN6ANoFkdAnqea+rU9ZHV9lChoBmgJaA9DCMQlx51SEWBAlIaUUpRoFU3oA2gWR0Cep5S/0ulHdX2UKGgGaAloD0MIAi1dwTYQX0CUhpRSlGgVTegDaBZHQJ6213jdYXB1fZQoaAZoCWgPQwhJ1XYTfIlfQJSGlFKUaBVN6ANoFkdAnrbRK+SKWXV9lChoBmgJaA9DCGjsSzYeil1AlIaUUpRoFU3oA2gWR0CexpwCbMHKdX2UKGgGaAloD0MI0o+GU+aoX0CUhpRSlGgVTegDaBZHQJ7GlcjZ+QV1fZQoaAZoCWgPQwhwlpLlJP5bQJSGlFKUaBVN6ANoFkdAntVuzIFNcnV9lChoBmgJaA9DCOFGyhZJ11tAlIaUUpRoFU3oA2gWR0Ce1WiWmgrZdX2UKGgGaAloD0MIE57Q60+VXUCUhpRSlGgVTegDaBZHQJ7jgOAiFCd1fZQoaAZoCWgPQwg6zQLtDolcQJSGlFKUaBVN6ANoFkdAnuN6p97Wu3V9lChoBmgJaA9DCI20VN6OIWBAlIaUUpRoFU3oA2gWR0Ce9Cm7aqS6dX2UKGgGaAloD0MIDVNb6iBkX0CUhpRSlGgVTegDaBZHQJ70I6JZW7x1fZQoaAZoCWgPQwhm+E830FxgQJSGlFKUaBVN6ANoFkdAnv55D/lyR3V9lChoBmgJaA9DCO56aYqANGBAlIaUUpRoFU3oA2gWR0Ce/nLFXJYDdX2UKGgGaAloD0MIBARz9PgCXkCUhpRSlGgVTegDaBZHQJ8Og1YQrc11fZQoaAZoCWgPQwg+yogLwGRgQJSGlFKUaBVN6ANoFkdAnw59CeEqUnV9lChoBmgJaA9DCGfROxVwylxAlIaUUpRoFU3oA2gWR0CfHFwgDA8CdX2UKGgGaAloD0MItU5cjldmXECUhpRSlGgVTegDaBZHQJ8cVezD4xl1fZQoaAZoCWgPQwiyZfm6DARgQJSGlFKUaBVN6ANoFkdAnyqlx0dRznV9lChoBmgJaA9DCJp3nKIjuVxAlIaUUpRoFU3oA2gWR0CfKp98Z1mrdX2UKGgGaAloD0MIZkmAmloLXUCUhpRSlGgVTegDaBZHQJ85OntOVPh1fZQoaAZoCWgPQwijHqLRHWVcQJSGlFKUaBVN6ANoFkdAnzk0Ja7mMnV9lChoBmgJaA9DCORmuAGfw15AlIaUUpRoFU3oA2gWR0CfR899c8kldX2UKGgGaAloD0MIVd6OcFpTYECUhpRSlGgVTegDaBZHQJ9HySyMUAV1fZQoaAZoCWgPQwhI/mDguQtgQJSGlFKUaBVN6ANoFkdAn3LKY7aIvnV9lChoBmgJaA9DCGZrfZFQW2BAlIaUUpRoFU3oA2gWR0CfcsQaaTfSdX2UKGgGaAloD0MIi4wOSMLqW0CUhpRSlGgVTegDaBZHQJ+B3uDzyz51fZQoaAZoCWgPQwg6BmSvdypgQJSGlFKUaBVN6ANoFkdAn4HYppeu3nV9lChoBmgJaA9DCKxWJvxSDl1AlIaUUpRoFU3oA2gWR0Cfkm3w1BMSdX2UKGgGaAloD0MImL1sO21BXkCUhpRSlGgVTegDaBZHQJ+SZ6MR6GB1fZQoaAZoCWgPQwjye5v+7GFdQJSGlFKUaBVN6ANoFkdAn6KXyVfNRnV9lChoBmgJaA9DCMehfhe2TmBAlIaUUpRoFU3oA2gWR0CfopF+/gzhdX2UKGgGaAloD0MIr1sExvr0X0CUhpRSlGgVTegDaBZHQJ+wtjurp7l1fZQoaAZoCWgPQwh31m670HNcQJSGlFKUaBVN6ANoFkdAn7Cv779AHHV9lChoBmgJaA9DCObJNQUyqV5AlIaUUpRoFU3oA2gWR0Cfvlay8jA0dX2UKGgGaAloD0MIeQd40sIpXUCUhpRSlGgVTegDaBZHQJ++UF0PpY91fZQoaAZoCWgPQwgHfH4YIVJgQJSGlFKUaBVN6ANoFkdAn8wqZUkv9XV9lChoBmgJaA9DCP1qDhDMYF1AlIaUUpRoFU3oA2gWR0CfzCQNkOI7dX2UKGgGaAloD0MI2SJpN/qLXECUhpRSlGgVTegDaBZHQJ/br67/XGx1fZQoaAZoCWgPQwgdzCbAsE5dQJSGlFKUaBVN6ANoFkdAn9upWV/tpnV9lChoBmgJaA9DCM4cklooa2BAlIaUUpRoFU3oA2gWR0Cf6XA5Jbt7dX2UKGgGaAloD0MIK8O4G0TCXUCUhpRSlGgVTegDaBZHQJ/paecx0uF1fZQoaAZoCWgPQwh2qKYk615gQJSGlFKUaBVN6ANoFkdAn/d/nbItDnV9lChoBmgJaA9DCKGDLuHQR19AlIaUUpRoFU3oA2gWR0Cf93lN1yNodX2UKGgGaAloD0MI+fTYlgFMXkCUhpRSlGgVTegDaBZHQKADAcnVoYh1fZQoaAZoCWgPQwhm+iXircZcQJSGlFKUaBVN6ANoFkdAoAL+nyd4FHV9lChoBmgJaA9DCE4oRMAhuV9AlIaUUpRoFU3oA2gWR0CgCkhje9BbdX2UKGgGaAloD0MIGjBI+rQIXUCUhpRSlGgVTegDaBZHQKAKRTuv2Xd1fZQoaAZoCWgPQwihnj4Cfy1cQJSGlFKUaBVN6ANoFkdAoCAHS2H+InV9lChoBmgJaA9DCJpC5zV2nlxAlIaUUpRoFU3oA2gWR0CgIAQjdHlPdX2UKGgGaAloD0MIDFcHQNzFW0CUhpRSlGgVTegDaBZHQKAnnOmBOHp1fZQoaAZoCWgPQwgeM1AZ/9pcQJSGlFKUaBVN6ANoFkdAoCeZwqAjIXV9lChoBmgJaA9DCOUNMPMd4FxAlIaUUpRoFU3oA2gWR0CgLrwI2OyWdX2UKGgGaAloD0MIx9l0BPCJYECUhpRSlGgVTegDaBZHQKAuuOAAhjh1fZQoaAZoCWgPQwjDDfj8MPpcQJSGlFKUaBVN6ANoFkdAoDZwlpoK2XV9lChoBmgJaA9DCFfMCG8PUmBAlIaUUpRoFU3oA2gWR0CgNm1t4zJqdX2UKGgGaAloD0MIEVSNXg3uXkCUhpRSlGgVTegDaBZHQKA89K6nR9h1fZQoaAZoCWgPQwiXkXpP5XpcQJSGlFKUaBVN6ANoFkdAoDzxhx5s03V9lChoBmgJaA9DCPRuLCgM019AlIaUUpRoFU3oA2gWR0CgQ1XoC+10dX2UKGgGaAloD0MIsqGb/YFVXUCUhpRSlGgVTegDaBZHQKBDUsFt8/l1fZQoaAZoCWgPQwhFLjiDv0ZdQJSGlFKUaBVN6ANoFkdAoEk8Eq2BrnV9lChoBmgJaA9DCAJmvoMfTmBAlIaUUpRoFU3oA2gWR0CgSTjrZ8KHdX2UKGgGaAloD0MInwCKkSVIYECUhpRSlGgVTegDaBZHQKBPt/WlMyt1fZQoaAZoCWgPQwjK372jxjJdQJSGlFKUaBVN6ANoFkdAoE+0zl90BHV9lChoBmgJaA9DCB4bgXhdK2BAlIaUUpRoFU3oA2gWR0CgVaWF36hydX2UKGgGaAloD0MIWtk+5C3KXUCUhpRSlGgVTegDaBZHQKBVol67dzp1fZQoaAZoCWgPQwgUB9Dv+2ddQJSGlFKUaBVN6ANoFkdAoFvLNQj2SXV9lChoBmgJaA9DCEM6PITxc11AlIaUUpRoFU3oA2gWR0CgW8gJ1JUYdX2UKGgGaAloD0MIkWKARBMrYECUhpRSlGgVTegDaBZHQKBiV9Wp6yB1fZQoaAZoCWgPQwgbSYJwBVFcQJSGlFKUaBVN6ANoFkdAoGJUq+ajOHV9lChoBmgJaA9DCM/1fThIiF1AlIaUUpRoFU3oA2gWR0CgarOhTOxCdX2UKGgGaAloD0MIT1lN15M9YECUhpRSlGgVTegDaBZHQKBqsIZ62OR1fZQoaAZoCWgPQwhNTYI3JEVgQJSGlFKUaBVN6ANoFkdAoHJS4FzMinV9lChoBmgJaA9DCLx2acPhVWBAlIaUUpRoFU3oA2gWR0Cgck+6iCardWUu"
82
+ },
83
+ "ep_success_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
86
+ },
87
+ "_n_updates": 489,
88
+ "n_steps": 1024,
89
+ "gamma": 0.9999,
90
+ "gae_lambda": 0.95,
91
+ "ent_coef": 0.0,
92
+ "vf_coef": 0.0,
93
+ "max_grad_norm": 0.0,
94
+ "normalize_advantage": true,
95
+ "batch_size": 128,
96
+ "cg_max_steps": 25,
97
+ "cg_damping": 0.1,
98
+ "line_search_shrinking_factor": 0.8,
99
+ "line_search_max_iter": 10,
100
+ "target_kl": 0.01,
101
+ "n_critic_updates": 20,
102
+ "sub_sampling_factor": 1
103
+ }
trpo-Swimmer-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfd86b0a0995eafc346c42a5c008122e581d87ad48498d503c09b8ce87c887ff
3
+ size 43439
trpo-Swimmer-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48194a84f70e6aa321de380e66538188cea6a501bc2942174bdb171cd23f91a9
3
+ size 43134
trpo-Swimmer-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trpo-Swimmer-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7492bc10f6092e1a399c4d4b8dca1b7259e9a97752b1d5a581e2459fee4ae354
3
+ size 4379