Update README.md
Browse files
README.md
CHANGED
@@ -4,86 +4,22 @@ tags:
|
|
4 |
model-index:
|
5 |
- name: few_shot_ner
|
6 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
-
|
9 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
-
should probably proofread and complete it, then remove this comment. -->
|
11 |
-
|
12 |
# few_shot_ner
|
13 |
|
14 |
-
|
15 |
-
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.5196
|
17 |
-
|
18 |
-
## Model description
|
19 |
-
|
20 |
-
More information needed
|
21 |
-
|
22 |
-
## Intended uses & limitations
|
23 |
-
|
24 |
-
More information needed
|
25 |
-
|
26 |
-
## Training and evaluation data
|
27 |
-
|
28 |
-
More information needed
|
29 |
-
|
30 |
-
## Training procedure
|
31 |
-
|
32 |
-
### Training hyperparameters
|
33 |
-
|
34 |
-
The following hyperparameters were used during training:
|
35 |
-
- learning_rate: 0.0002
|
36 |
-
- train_batch_size: 16
|
37 |
-
- eval_batch_size: 8
|
38 |
-
- seed: 42
|
39 |
-
- distributed_type: multi-GPU
|
40 |
-
- gradient_accumulation_steps: 4
|
41 |
-
- total_train_batch_size: 64
|
42 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
-
- lr_scheduler_type: linear
|
44 |
-
- lr_scheduler_warmup_steps: 1000
|
45 |
-
- num_epochs: 100.0
|
46 |
-
|
47 |
-
### Training results
|
48 |
|
49 |
-
|
50 |
-
|:-------------:|:-----:|:-----:|:---------------:|
|
51 |
-
| 0.5139 | 0.08 | 1000 | 0.5287 |
|
52 |
-
| 0.5211 | 0.15 | 2000 | 0.5308 |
|
53 |
-
| 0.5244 | 0.23 | 3000 | 0.5305 |
|
54 |
-
| 0.5184 | 0.3 | 4000 | 0.5299 |
|
55 |
-
| 0.5238 | 0.38 | 5000 | 0.5284 |
|
56 |
-
| 0.5236 | 0.46 | 6000 | 0.5283 |
|
57 |
-
| 0.5198 | 0.53 | 7000 | 0.5274 |
|
58 |
-
| 0.5207 | 0.61 | 8000 | 0.5273 |
|
59 |
-
| 0.523 | 0.68 | 9000 | 0.5273 |
|
60 |
-
| 0.5208 | 0.76 | 10000 | 0.5267 |
|
61 |
-
| 0.5214 | 0.84 | 11000 | 0.5258 |
|
62 |
-
| 0.5175 | 0.91 | 12000 | 0.5247 |
|
63 |
-
| 0.5192 | 0.99 | 13000 | 0.5242 |
|
64 |
-
| 0.5071 | 1.06 | 14000 | 0.5240 |
|
65 |
-
| 0.5064 | 1.14 | 15000 | 0.5252 |
|
66 |
-
| 0.507 | 1.22 | 16000 | 0.5248 |
|
67 |
-
| 0.5045 | 1.29 | 17000 | 0.5242 |
|
68 |
-
| 0.5109 | 1.37 | 18000 | 0.5237 |
|
69 |
-
| 0.5095 | 1.44 | 19000 | 0.5232 |
|
70 |
-
| 0.5076 | 1.52 | 20000 | 0.5234 |
|
71 |
-
| 0.5077 | 1.59 | 21000 | 0.5222 |
|
72 |
-
| 0.508 | 1.67 | 22000 | 0.5219 |
|
73 |
-
| 0.5122 | 1.75 | 23000 | 0.5214 |
|
74 |
-
| 0.5108 | 1.82 | 24000 | 0.5210 |
|
75 |
-
| 0.5079 | 1.9 | 25000 | 0.5201 |
|
76 |
-
| 0.5096 | 1.97 | 26000 | 0.5194 |
|
77 |
-
| 0.4983 | 2.05 | 27000 | 0.5201 |
|
78 |
-
| 0.4937 | 2.13 | 28000 | 0.5200 |
|
79 |
-
| 0.4959 | 2.2 | 29000 | 0.5199 |
|
80 |
-
| 0.4972 | 2.28 | 30000 | 0.5196 |
|
81 |
-
| 0.4975 | 2.35 | 31000 | 0.5196 |
|
82 |
|
|
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
- Pytorch 1.13.0+cu117
|
88 |
-
- Datasets 2.14.4
|
89 |
-
- Tokenizers 0.13.3
|
|
|
4 |
model-index:
|
5 |
- name: few_shot_ner
|
6 |
results: []
|
7 |
+
license: apache-2.0
|
8 |
+
datasets:
|
9 |
+
- qgyd2021/few_shot_ner_sft
|
10 |
+
language:
|
11 |
+
- zh
|
12 |
+
- en
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
---
|
|
|
|
|
|
|
|
|
15 |
# few_shot_ner
|
16 |
|
17 |
+
此模型是基于 [uer/gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall) 在数据集 [qgyd2021/few_shot_ner_sft](https://huggingface.co/datasets/qgyd2021/few_shot_ner_sft) 上训练的.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
可以在此处 [qgyd2021/gpt2_chat](https://huggingface.co/spaces/qgyd2021/gpt2_chat) 体验.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
基于此模型或数据集, 你可以:
|
22 |
|
23 |
+
(1)小样本或零样本的实体识别.
|
24 |
|
25 |
+
(2)用于实体识别数据集的辅助构建. 即当你在自己的数据集上进行了部分数据标注后, 可以与此数据集混合并训练模型, 之后用于数据自动标注/辅助标注.
|
|
|
|
|
|