Upload README_CN.md with huggingface_hub
Browse files- README_CN.md +549 -0
README_CN.md
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- qihoo360
|
9 |
+
- 奇虎360
|
10 |
+
- zhinao
|
11 |
+
- 360Zhinao
|
12 |
+
- pretrain
|
13 |
+
---
|
14 |
+
|
15 |
+
<div align="center">
|
16 |
+
<h1>
|
17 |
+
360智脑
|
18 |
+
</h1>
|
19 |
+
</div>
|
20 |
+
<div align="center">
|
21 |
+
🤗 <a href="https://huggingface.co/qihoo360">Hugging Face</a>   |   
|
22 |
+
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
23 |
+
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>  
|
24 |
+
</div>
|
25 |
+
<br>
|
26 |
+
<p align="center">
|
27 |
+
欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。
|
28 |
+
</p>
|
29 |
+
|
30 |
+
<br>
|
31 |
+
|
32 |
+
# 模型介绍
|
33 |
+
🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
|
34 |
+
- **360Zhinao-7B-Base**
|
35 |
+
- **360Zhinao-7B-Chat-4K**
|
36 |
+
- **360Zhinao-7B-Chat-32K**
|
37 |
+
- **360Zhinao-7B-Chat-360K**
|
38 |
+
|
39 |
+
360智脑大模型特点如下:
|
40 |
+
- **基础模型**:采用 3.4 万亿 Tokens 的高质量语料库训练,以中文、英文、代码为主,在相关基准评测中,同尺寸有竞争力。
|
41 |
+
- **对话模型**:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。据了解,360K(约50万字)是当前国产开源模型文本长度最长的。
|
42 |
+
|
43 |
+
<br>
|
44 |
+
|
45 |
+
# 更新信息
|
46 |
+
- [2024.04.10] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
|
47 |
+
|
48 |
+
<br>
|
49 |
+
|
50 |
+
# 目录
|
51 |
+
- [下载地址](#下载地址)
|
52 |
+
- [模型评估](#模型评估)
|
53 |
+
- [快速开始](#快速开始)
|
54 |
+
- [模型推理](#模型推理)
|
55 |
+
- [模型微调](#模型微调)
|
56 |
+
- [许可证](#许可证)
|
57 |
+
|
58 |
+
<br>
|
59 |
+
|
60 |
+
# 下载地址
|
61 |
+
本次发布版本和下载链接见下表:
|
62 |
+
| Size | Model | BF16 | Int4|
|
63 |
+
|:-:|-|:-:|:-:|
|
64 |
+
| 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | |
|
65 |
+
| 7B | 360Zhinao-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K-Int4">🤗</a> |
|
66 |
+
| 7B | 360Zhinao-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K-Int4">🤗</a> |
|
67 |
+
| 7B | 360Zhinao-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K-Int4">🤗</a> |
|
68 |
+
|
69 |
+
<br>
|
70 |
+
|
71 |
+
# 模型评估
|
72 |
+
|
73 |
+
## 基础模型
|
74 |
+
我们在OpenCompass的主流评测数据集上验证了我们的模型性能,包括C-Eval、AGIEval、MMLU、CMMLU、HellaSwag、MATH、GSM8K、HumanEval、MBPP、BBH、LAMBADA,考察的能力包括自然语言理解、知识、数学计算和推理、代码生成、逻辑推理等。
|
75 |
+
|
76 |
+
|
77 |
+
| <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
|
78 |
+
|:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
|
79 |
+
| Baichuan2-7B | 41.49 | 56.3 | 34.6 | 54.7 | 57 | 67 | 5.4 | 24.6 | 17.7 | 24 | 41.8 | 73.3 |
|
80 |
+
| Baichuan-7B | 31.94 | 44.7 | 24.6 | 41.5 | 44.6 | 68.4 | 2.5 | 9.6 | 9.1 | 6.4 | 32.8 | 67.1 |
|
81 |
+
| ChatGLM3-6B | **58.67** | 67 | 47.4 | 62.8 | 66.5 | 76.5 | 19.2 | 61 | 44.5 | **57.2** | **66.2** | 77.1 |
|
82 |
+
| DeepSeek-7B | 39.8 | 45 | 24 | 49.3 | 46.8 | 73.4 | 4.2 | 18.3 | 25 | 36.4 | 42.8 | 72.6 |
|
83 |
+
| InternLM2-7B | 58.01 | 65.7 | 50.2 | 65.5 | 66.2 | 79.6 | 19.9 | **70.6** | 41.5 | 42.4 | 64.4 | 72.1 |
|
84 |
+
| InternLM-7B | 39.33 | 53.4 | 36.9 | 51 | 51.8 | 70.6 | 6.3 | 31.2 | 13.4 | 14 | 37 | 67 |
|
85 |
+
| LLaMA-2-7B | 33.27 | 32.5 | 21.8 | 46.8 | 31.8 | 74 | 3.3 | 16.7 | 12.8 | 14.8 | 38.2 | 73.3 |
|
86 |
+
| LLaMA-7B | 30.35 | 27.3 | 20.6 | 35.6 | 26.8 | 74.3 | 2.9 | 10 | 12.8 | 16.8 | 33.5 | 73.3 |
|
87 |
+
| Mistral-7B-v0.1 | 47.67 | 47.4 | 32.8 | 64.1 | 44.7 | 78.9 | 11.3 | 47.5 | 27.4 | 38.6 | 56.7 | 75 |
|
88 |
+
| MPT-7B | 30.06 | 23.5 | 21.3 | 27.5 | 25.9 | 75 | 2.9 | 9.1 | 17.1 | 22.8 | 35.6 | 70 |
|
89 |
+
| Qwen1.5-7B | 55.12 | 73.57 | **50.8** | 62.15 | 71.84 | 72.62 | **20.36** | 54.36 | **53.05** | 36.8 | 40.01 | 70.74 |
|
90 |
+
| Qwen-7B | 49.53 | 63.4 | 45.3 | 59.7 | 62.5 | 75 | 13.3 | 54.1 | 27.4 | 31.4 | 45.2 | 67.5 |
|
91 |
+
| XVERSE-7B | 34.27 | 61.1 | 39 | 58.4 | 60.8 | 73.7 | 2.2 | 11.7 | 4.9 | 10.2 | 31 | 24 |
|
92 |
+
| Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
|
93 |
+
| **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** |
|
94 |
+
|
95 |
+
以上结果,在官方[Opencompass](https://rank.opencompass.org.cn/leaderboard-llm)上可查询或可复现。
|
96 |
+
|
97 |
+
## Chat模型
|
98 |
+
|
99 |
+
我们采用两阶段的方式训练长文本模型.
|
100 |
+
|
101 |
+
**第一阶段**:我们增大RoPE base,将上下文长度扩展至32K训练:
|
102 |
+
- 首先,对基础模型进行了约5B tokens的32K窗口继续预训练。
|
103 |
+
- 接着,SFT阶段使用了多种形式和来源的长文本数据,包括高质量的人工标注32K长文本数据。
|
104 |
+
|
105 |
+
**第二阶段**:我们将上下文长度扩展至360K进行训练,使用数据如下:
|
106 |
+
- 少量高质量人工标注数据。
|
107 |
+
- 由于带有标注的超长文本数据的稀缺性,我们构造了多种形式的合成数据:
|
108 |
+
- 多文档问答:类似[Ziya-Reader](https://arxiv.org/abs/2311.09198),我们基于360自有数据构造了多种类型的多文档问答数据,同时将问答改为多轮,显著提升长文本的训练效率。
|
109 |
+
- 单文档问答:类似[LLama2 Long](https://arxiv.org/abs/2309.16039),我们构造了基于超长文本各个片段的多轮问答数据。
|
110 |
+
|
111 |
+
我们在多种长度和多种任务的评测Benchmark上验证不同版本模型的性能。
|
112 |
+
|
113 |
+
- ### 360Zhinao-7B-Chat-32K模型长文本能力评测
|
114 |
+
|
115 |
+
|
116 |
+
我们使用LongBench验证长文本效果。[LongBench](https://github.com/THUDM/LongBench)是第一个多任务、中英双语、针对大语言模型长文本理解能力的评测基准。LongBench由六大类、二十一个不同的任务组成,我们选择其中与中文长文本应用最密切相关的中文单文档问答、多文档问答、摘要、Few-shot等任务进行评测。
|
117 |
+
|
118 |
+
| Model | Avg | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 |
|
119 |
+
| :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
|
120 |
+
| GPT-3.5-Turbo-16k | 37.84 | 61.2 | 28.7 | 16 | 29.2 | 54.1 |
|
121 |
+
| ChatGLM2-6B-32k | 37.16 | 51.6 | 37.6 | 16.2 | 27.7 | 52.7 |
|
122 |
+
| ChatGLM3-6B-32k | 44.62 | **62.3** | 44.8 | 17.8 | 42 | 56.2 |
|
123 |
+
| InternLM2-Chat-7B | 42.20 | 56.65 | 29.15 | **17.99** | 43.5 | **63.72** |
|
124 |
+
| Qwen1.5-Chat-7B | 36.75 | 52.85 | 30.08 | 14.28 | 32 | 54.55 |
|
125 |
+
| Qwen1.5-Chat-14B | 39.80 | 60.39 | 27.99 | 14.77 | 37 | 58.87 |
|
126 |
+
| 360Zhinao-7B-Chat-32K | **45.18** | 57.18 | **48.06** | 15.03 | **44** | 61.64 |
|
127 |
+
|
128 |
+
- ### 360Zhinao-7B-Chat-360K“大海捞针”测试
|
129 |
+
|
130 |
+
大海捞针测试([NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack))是将关键信息插入一段长文本的不同位置,再对该关键信息提问,从而测试大模型的长文本能力的一种方法。
|
131 |
+
|
132 |
+
360Zhinao-7B-Chat-360K在中英文大海捞针中都能达到98%以上的准确率。
|
133 |
+
|
134 |
+
- 英文"大海捞针"(和[NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack)相同)
|
135 |
+
|
136 |
+
<p align="center">
|
137 |
+
<img src="assets/360Zhinao-7B-Chat-360K.en_score.png" width="600" />
|
138 |
+
<p>
|
139 |
+
|
140 |
+
**针**:The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
|
141 |
+
|
142 |
+
**提问**:What is the best thing to do in San Francisco?
|
143 |
+
|
144 |
+
|
145 |
+
- 中文“大海捞针”
|
146 |
+
|
147 |
+
<p align="center">
|
148 |
+
<img src="assets/360Zhinao-7B-Chat-360K.zh_score.png" width="600" />
|
149 |
+
<p>
|
150 |
+
|
151 |
+
我们仿照[SuperCLUE-200K测评基准](https://mp.weixin.qq.com/s/QgoRf2LB-7vc3vTFOHJkpw)构造了中文大海捞针:
|
152 |
+
|
153 |
+
**海**:长篇小说。
|
154 |
+
|
155 |
+
**针**:王莽是一名勤奋的店员,他每天凌晨就起床,赶在第一缕阳光照亮大地之���到达店铺,为即将开始的一天做准备。他清扫店铺,整理货架,为顾客提供方便。他对五金的种类和用途了如指掌,无论顾客需要什么,他总能准确地找到。\n然而,他的老板刘秀却总是对他吹毛求疵。刘秀是个挑剔的人,他总能在王莽的工作中找出一些小错误,然后以此为由扣他的工资。他对王莽的工作要求非常严格,甚至有些过分。即使王莽做得再好,刘秀也总能找出一些小问题,让王莽感到非常沮丧。\n王莽虽然对此感到不满,但他并没有放弃。他知道,只有通过自己的努力,才能获得更好的生活。他坚持每天早起,尽管他知道那天可能会再次被刘秀扣工资。他始终保持微笑,尽管他知道刘秀可能会再次对他挑剔。
|
156 |
+
|
157 |
+
**提问**:王莽在谁的手下工作?
|
158 |
+
|
159 |
+
<br>
|
160 |
+
|
161 |
+
# 快速开始
|
162 |
+
简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao-7B-Base和360Zhinao-7B-Chat
|
163 |
+
|
164 |
+
## 依赖安装
|
165 |
+
- python 3.8 and above
|
166 |
+
- pytorch 2.0 and above
|
167 |
+
- transformers 4.37.2 and above
|
168 |
+
- CUDA 11.4 and above are recommended.
|
169 |
+
|
170 |
+
```shell
|
171 |
+
pip install -r requirements.txt
|
172 |
+
```
|
173 |
+
我们推荐安装flash-attention(当前已支持flash attention 2)来提高你的运行效率以及降低显存占用。(flash-attention只是可选项,不安装也可正常运行该项目)
|
174 |
+
|
175 |
+
>flash-attn >= 2.3.6
|
176 |
+
```shell
|
177 |
+
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
|
178 |
+
```
|
179 |
+
|
180 |
+
|
181 |
+
## 🤗 Transformers
|
182 |
+
### Base模型推理
|
183 |
+
|
184 |
+
此代码演示使用transformers快速使用360Zhinao-7B-Base模型进行推理
|
185 |
+
```python
|
186 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
187 |
+
from transformers.generation import GenerationConfig
|
188 |
+
|
189 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"
|
190 |
+
|
191 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
192 |
+
MODEL_NAME_OR_PATH,
|
193 |
+
trust_remote_code=True)
|
194 |
+
|
195 |
+
model = AutoModelForCausalLM.from_pretrained(
|
196 |
+
MODEL_NAME_OR_PATH,
|
197 |
+
device_map="auto",
|
198 |
+
trust_remote_code=True)
|
199 |
+
|
200 |
+
generation_config = GenerationConfig.from_pretrained(
|
201 |
+
MODEL_NAME_OR_PATH,
|
202 |
+
trust_remote_code=True)
|
203 |
+
|
204 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
205 |
+
inputs = inputs.to(model.device)
|
206 |
+
|
207 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
208 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
209 |
+
```
|
210 |
+
|
211 |
+
### Chat模型推理
|
212 |
+
|
213 |
+
此代码演示使用transformers快速使用360Zhinao-7B-Chat-4K模型进行推理
|
214 |
+
```python
|
215 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
216 |
+
from transformers.generation import GenerationConfig
|
217 |
+
|
218 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
|
219 |
+
|
220 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
221 |
+
MODEL_NAME_OR_PATH,
|
222 |
+
trust_remote_code=True)
|
223 |
+
|
224 |
+
model = AutoModelForCausalLM.from_pretrained(
|
225 |
+
MODEL_NAME_OR_PATH,
|
226 |
+
device_map="auto",
|
227 |
+
trust_remote_code=True)
|
228 |
+
|
229 |
+
generation_config = GenerationConfig.from_pretrained(
|
230 |
+
MODEL_NAME_OR_PATH,
|
231 |
+
trust_remote_code=True)
|
232 |
+
|
233 |
+
messages = []
|
234 |
+
#round-1
|
235 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
236 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
237 |
+
messages.append({"role": "assistant", "content": response})
|
238 |
+
print(messages)
|
239 |
+
|
240 |
+
#round-2
|
241 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
242 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
243 |
+
messages.append({"role": "assistant", "content": response})
|
244 |
+
print(messages)
|
245 |
+
```
|
246 |
+
|
247 |
+
## 🤖 ModelScope
|
248 |
+
### Base模型推理
|
249 |
+
|
250 |
+
此代码演示使用ModelScope快速使用360Zhinao-7B-Base模型进行推理
|
251 |
+
|
252 |
+
|
253 |
+
```python
|
254 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
255 |
+
from modelscope import GenerationConfig
|
256 |
+
|
257 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"
|
258 |
+
|
259 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
260 |
+
MODEL_NAME_OR_PATH,
|
261 |
+
trust_remote_code=True)
|
262 |
+
|
263 |
+
model = AutoModelForCausalLM.from_pretrained(
|
264 |
+
MODEL_NAME_OR_PATH,
|
265 |
+
device_map="auto",
|
266 |
+
trust_remote_code=True)
|
267 |
+
|
268 |
+
generation_config = GenerationConfig.from_pretrained(
|
269 |
+
MODEL_NAME_OR_PATH,
|
270 |
+
trust_remote_code=True)
|
271 |
+
|
272 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
273 |
+
inputs = inputs.to(model.device)
|
274 |
+
|
275 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
276 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
277 |
+
```
|
278 |
+
|
279 |
+
### Chat模型推理
|
280 |
+
|
281 |
+
此代码演示使用ModelScope快速使用360Zhinao-7B-Chat-4K模型进行推理
|
282 |
+
```python
|
283 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
284 |
+
from modelscope import GenerationConfig
|
285 |
+
|
286 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
|
287 |
+
|
288 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
289 |
+
MODEL_NAME_OR_PATH,
|
290 |
+
trust_remote_code=True)
|
291 |
+
|
292 |
+
model = AutoModelForCausalLM.from_pretrained(
|
293 |
+
MODEL_NAME_OR_PATH,
|
294 |
+
device_map="auto",
|
295 |
+
trust_remote_code=True)
|
296 |
+
|
297 |
+
generation_config = GenerationConfig.from_pretrained(
|
298 |
+
MODEL_NAME_OR_PATH,
|
299 |
+
trust_remote_code=True)
|
300 |
+
|
301 |
+
messages = []
|
302 |
+
#round-1
|
303 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
304 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
305 |
+
messages.append({"role": "assistant", "content": response})
|
306 |
+
print(messages)
|
307 |
+
|
308 |
+
#round-2
|
309 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
310 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
311 |
+
messages.append({"role": "assistant", "content": response})
|
312 |
+
print(messages)
|
313 |
+
```
|
314 |
+
|
315 |
+
## 终端 Demo
|
316 |
+
可使用终端交互实现快速体验
|
317 |
+
```shell
|
318 |
+
python cli_demo.py
|
319 |
+
```
|
320 |
+
<p align="center">
|
321 |
+
<img src="assets/cli_demo.gif" width="600" />
|
322 |
+
<p>
|
323 |
+
|
324 |
+
## 网页 Demo
|
325 |
+
也可使用网页交互实现快速体验
|
326 |
+
```shell
|
327 |
+
streamlit run web_demo.py
|
328 |
+
```
|
329 |
+
<p align="center">
|
330 |
+
<img src="assets/web_demo.gif" width="600" />
|
331 |
+
<p>
|
332 |
+
|
333 |
+
## API Demo
|
334 |
+
启动命令
|
335 |
+
```shell
|
336 |
+
python openai_api.py
|
337 |
+
```
|
338 |
+
|
339 |
+
请求参数
|
340 |
+
```shell
|
341 |
+
curl 'http://localhost:8360/v1/chat/completions' \
|
342 |
+
-H 'Content-Type: application/json' \
|
343 |
+
-d '{
|
344 |
+
"max_new_tokens": 200,
|
345 |
+
"do_sample": true,
|
346 |
+
"top_k": 0,
|
347 |
+
"top_p": 0.8,
|
348 |
+
"temperature": 1.0,
|
349 |
+
"repetition_penalty": 1.0,
|
350 |
+
"messages": [
|
351 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
352 |
+
{"role": "user", "content": "你好"}
|
353 |
+
]
|
354 |
+
}'
|
355 |
+
```
|
356 |
+
|
357 |
+
<br>
|
358 |
+
|
359 |
+
# 模型推理
|
360 |
+
## 模型量化
|
361 |
+
我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。
|
362 |
+
|
363 |
+
## 模型部署
|
364 |
+
### vLLM安装环境
|
365 |
+
如希望部署及加速推理,我们建议你使用 `vLLM==0.3.3`。
|
366 |
+
|
367 |
+
如果你使用**CUDA 12.1和PyTorch 2.1**,可以直接使用以下命令安装vLLM。
|
368 |
+
```shell
|
369 |
+
pip install vllm==0.3.3
|
370 |
+
```
|
371 |
+
|
372 |
+
否则请参考vLLM官方的[安装说明](https://docs.vllm.ai/en/latest/getting_started/installation.html)。
|
373 |
+
|
374 |
+
>安装完成后,还需要以下操作~
|
375 |
+
1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
|
376 |
+
2. 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。
|
377 |
+
3. 然后在vllm/model_executor/models/\_\_init\_\_.py文件增加一行代码
|
378 |
+
|
379 |
+
```shell
|
380 |
+
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
381 |
+
```
|
382 |
+
|
383 |
+
### vLLM服务启动
|
384 |
+
|
385 |
+
启动服务
|
386 |
+
```shell
|
387 |
+
python -m vllm.entrypoints.openai.api_server \
|
388 |
+
--served-model-name 360Zhinao-7B-Chat-4K \
|
389 |
+
--model qihoo360/360Zhinao-7B-Chat-4K \
|
390 |
+
--trust-remote-code \
|
391 |
+
--tensor-parallel-size 1 \
|
392 |
+
--max-model-len 4096 \
|
393 |
+
--host 0.0.0.0 \
|
394 |
+
--port 8360
|
395 |
+
```
|
396 |
+
|
397 |
+
使用curl请求服务
|
398 |
+
```shell
|
399 |
+
curl http://localhost:8360/v1/chat/completions \
|
400 |
+
-H "Content-Type: application/json" \
|
401 |
+
-d '{
|
402 |
+
"model": "360Zhinao-7B-Chat-4K",
|
403 |
+
"max_tokens": 200,
|
404 |
+
"top_k": -1,
|
405 |
+
"top_p": 0.8,
|
406 |
+
"temperature": 1.0,
|
407 |
+
"presence_penalty": 0.0,
|
408 |
+
"frequency_penalty": 0.0,
|
409 |
+
"messages": [
|
410 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
411 |
+
{"role": "user", "content": "你好"}
|
412 |
+
],
|
413 |
+
"stop": [
|
414 |
+
"<eod>",
|
415 |
+
"<|im_end|>",
|
416 |
+
"<|im_start|>"
|
417 |
+
]
|
418 |
+
}'
|
419 |
+
```
|
420 |
+
使用python请求服务
|
421 |
+
```python
|
422 |
+
from openai import OpenAI
|
423 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
424 |
+
openai_api_key = "EMPTY"
|
425 |
+
openai_api_base = "http://localhost:8360/v1"
|
426 |
+
|
427 |
+
client = OpenAI(
|
428 |
+
api_key=openai_api_key,
|
429 |
+
base_url=openai_api_base,
|
430 |
+
)
|
431 |
+
|
432 |
+
chat_response = client.chat.completions.create(
|
433 |
+
model="360Zhinao-7B-Chat-4K",
|
434 |
+
messages=[
|
435 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
436 |
+
{"role": "user", "content": "你好"},
|
437 |
+
],
|
438 |
+
stop=[
|
439 |
+
"<eod>",
|
440 |
+
"<|im_end|>",
|
441 |
+
"<|im_start|>"
|
442 |
+
],
|
443 |
+
presence_penalty=0.0,
|
444 |
+
frequency_penalty=0.0
|
445 |
+
)
|
446 |
+
print("Chat response:", chat_response)
|
447 |
+
```
|
448 |
+
|
449 |
+
> 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。
|
450 |
+
|
451 |
+
<br>
|
452 |
+
|
453 |
+
# 模型微调
|
454 |
+
## 训练数据
|
455 |
+
|
456 |
+
我们提供了微调训练样例数据 data/test.json,该样例数据是从 [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) 采样出 1 万条,并且做了格式转换。
|
457 |
+
|
458 |
+
数据格式:
|
459 |
+
```json
|
460 |
+
[
|
461 |
+
{
|
462 |
+
"id": 1,
|
463 |
+
"conversations": [
|
464 |
+
{
|
465 |
+
"from": "system",
|
466 |
+
"value": "You are a helpful assistant."
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"from": "user",
|
470 |
+
"value": "您好啊"
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"from": "assistant",
|
474 |
+
"value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
|
475 |
+
}
|
476 |
+
]
|
477 |
+
}
|
478 |
+
]
|
479 |
+
```
|
480 |
+
|
481 |
+
## 微调训练
|
482 |
+
训练脚本如下:
|
483 |
+
```shell
|
484 |
+
set -x
|
485 |
+
|
486 |
+
HOSTFILE=hostfile
|
487 |
+
DS_CONFIG=./finetune/ds_config_zero2.json
|
488 |
+
|
489 |
+
# PARAMS
|
490 |
+
LR=5e-6
|
491 |
+
EPOCHS=3
|
492 |
+
MAX_LEN=4096
|
493 |
+
BATCH_SIZE=4
|
494 |
+
NUM_NODES=1
|
495 |
+
NUM_GPUS=8
|
496 |
+
MASTER_PORT=29500
|
497 |
+
|
498 |
+
IS_CONCAT=False # 是否数据拼接到��大长度(MAX_LEN)
|
499 |
+
|
500 |
+
DATA_PATH="./data/training_data_sample.json"
|
501 |
+
MODEL_PATH="qihoo360/360Zhinao-7B-Base"
|
502 |
+
OUTPUT_DIR="./outputs/"
|
503 |
+
|
504 |
+
deepspeed --hostfile ${HOSTFILE} \
|
505 |
+
--master_port ${MASTER_PORT} \
|
506 |
+
--num_nodes ${NUM_NODES} \
|
507 |
+
--num_gpus ${NUM_GPUS} \
|
508 |
+
finetune.py \
|
509 |
+
--report_to "tensorboard" \
|
510 |
+
--data_path ${DATA_PATH} \
|
511 |
+
--model_name_or_path ${MODEL_PATH} \
|
512 |
+
--output_dir ${OUTPUT_DIR} \
|
513 |
+
--model_max_length ${MAX_LEN} \
|
514 |
+
--num_train_epochs ${EPOCHS} \
|
515 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
516 |
+
--gradient_accumulation_steps 1 \
|
517 |
+
--save_strategy steps \
|
518 |
+
--save_steps 200 \
|
519 |
+
--learning_rate ${LR} \
|
520 |
+
--lr_scheduler_type cosine \
|
521 |
+
--adam_beta1 0.9 \
|
522 |
+
--adam_beta2 0.95 \
|
523 |
+
--adam_epsilon 1e-8 \
|
524 |
+
--max_grad_norm 1.0 \
|
525 |
+
--weight_decay 0.1 \
|
526 |
+
--warmup_ratio 0.01 \
|
527 |
+
--gradient_checkpointing True \
|
528 |
+
--bf16 True \
|
529 |
+
--tf32 True \
|
530 |
+
--deepspeed ${DS_CONFIG} \
|
531 |
+
--is_concat ${IS_CONCAT} \
|
532 |
+
--logging_steps 1 \
|
533 |
+
--log_on_each_node False
|
534 |
+
```
|
535 |
+
```shell
|
536 |
+
bash finetune/ds_finetune.sh
|
537 |
+
```
|
538 |
+
- 可通过配置hostfile,实现单机、多机训练。
|
539 |
+
- 可通过配置ds_config,实现zero2、zero3。
|
540 |
+
- 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
|
541 |
+
- 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。
|
542 |
+
|
543 |
+
<br>
|
544 |
+
|
545 |
+
# 许可证
|
546 |
+
|
547 |
+
本仓库源码遵循开源许可证Apache 2.0。
|
548 |
+
|
549 |
+
360智脑开源模型支持商用,若需将本模型及衍生模型用于商业用途,请通过邮箱(g-zhinao-opensource@360.cn)联系进行申请, 具体许可协议请见[《360智脑开源模型许可证》](https://github.com/Qihoo360/360zhinao/blob/main/360%E6%99%BA%E8%84%91%E5%BC%80%E6%BA%90%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E8%AF%81.txt)。
|