Upload folder using huggingface_hub
Browse files- README.md +554 -3
- README_CN.md +564 -0
README.md
CHANGED
@@ -1,3 +1,554 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- qihoo360
|
9 |
+
- 奇虎360
|
10 |
+
- zhinao
|
11 |
+
- 360Zhinao
|
12 |
+
- pretrain
|
13 |
+
---
|
14 |
+
|
15 |
+
<p align="left">
|
16 |
+
<a href="./README_CN.md">中文</a> |   English</a> 
|
17 |
+
</p>
|
18 |
+
<br>
|
19 |
+
|
20 |
+
<div align="center">
|
21 |
+
<h1>
|
22 |
+
360Zhinao2 (360智脑)
|
23 |
+
</h1>
|
24 |
+
</div>
|
25 |
+
<div align="center">
|
26 |
+
🤗 <a href="https://huggingface.co/qihoo360">HuggingFace</a>   |   
|
27 |
+
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
28 |
+
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>  
|
29 |
+
</div>
|
30 |
+
<br>
|
31 |
+
<p align="center">
|
32 |
+
Feel free to visit 360Zhinao's official website<a href="https://ai.360.com"> https://ai.360.com</a> for more experience.
|
33 |
+
</p>
|
34 |
+
|
35 |
+
<br>
|
36 |
+
|
37 |
+
# Introduction
|
38 |
+
🎉🎉🎉 We released the 360Zhinao2 model series:
|
39 |
+
- **360Zhinao2-7B-Base**
|
40 |
+
- **360Zhinao2-7B-Chat-4K**
|
41 |
+
- **360Zhinao2-7B-Chat-32K**
|
42 |
+
- **360Zhinao2-7B-Chat-360K**
|
43 |
+
|
44 |
+
Notable features of our 360Zhinao models are:
|
45 |
+
|
46 |
+
- **Base Model:** Using popular two-stage training method, In the first stage we totally train 10T tokens with a cosine learning rate schedule. In the second stage we increase the proportion of high-quality data and totally train 100B tokens, with the learning rate decaying directly to 0. The total training data for 360Zhinao2-7B amounts to 10.1T tokens.
|
47 |
+
- **Chat Models:** Powerful chat capabilities and three context lengths of 4K, 32K and 360K.
|
48 |
+
|
49 |
+
<br>
|
50 |
+
|
51 |
+
# News and Updates
|
52 |
+
- [2024.11.18] 🔥🔥🔥We release 360Zhinao2-7B, providing access to both the Base model and Chat models with text lengths of 4K, 32K, and 360K.
|
53 |
+
- [2024.05.23] We released two models, 360Zhinao-search and 360Zhinao-1.8B-Reranking, which ranked first respectively in the Retrieval and Reranking tasks of [C-MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) .
|
54 |
+
- [2024.05.20] We extended llama3 and released **llama3-8B-360Zhinao-360k-Instruct**<a href="https://huggingface.co/qihoo360/llama3-8B-360Zhinao-360k-Instruct">🤗</a>
|
55 |
+
- [2024.04.12] We released **360Zhinao-7B** v1.0, including the base model and three chat models with context lengths 4K, 32K and 360K.
|
56 |
+
Technical report is on [arXiv](https://arxiv.org/abs/2405.13386).
|
57 |
+
|
58 |
+
<br>
|
59 |
+
|
60 |
+
# Table of contents
|
61 |
+
- [Download URL](#Download-URL)
|
62 |
+
- [Model Evaluation](#Model-Evaluation)
|
63 |
+
- [Quickstart](#Quickstart)
|
64 |
+
- [Model Inference](#Model-Inference)
|
65 |
+
- [Model Finetune](#Model-Finetune)
|
66 |
+
- [License](#License)
|
67 |
+
|
68 |
+
<br>
|
69 |
+
|
70 |
+
# Download URL
|
71 |
+
|
72 |
+
| Size | Model | BF16 | Int4|
|
73 |
+
|-|-|-|-|
|
74 |
+
| 7B | 360Zhinao2-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Base">🤗</a> | |
|
75 |
+
| 7B | 360Zhinao2-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K-Int4">🤗</a> |
|
76 |
+
| 7B | 360Zhinao2-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K-Int4">🤗</a> |
|
77 |
+
| 7B | 360Zhinao2-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K-Int4">🤗</a> |
|
78 |
+
|
79 |
+
<br>
|
80 |
+
|
81 |
+
# Model Evaluation
|
82 |
+
## Base Model
|
83 |
+
We used the open-source tool OpenCompass to evaluate the model and compared it with open-source models under 10B from the past six months. The 360Zhinao2-7B model is competive. The 360Zhinao2-7B model performs well on Chinese benchmarks such as CEval, C3 and LCSTS. The average socres of Chinese benchmarks is No 1. It also ranks No 1 on Math which is a challenging competition math dataset. **The 360Zhinao2-7B model has advantages in Chinese benchmark and challenging competition math.**
|
84 |
+
|
85 |
+
<table>
|
86 |
+
<tr>
|
87 |
+
<td>Type</td><td>Datasets</td><td>language</td><td>glm4-9b</td><td>Qwen2.5-7B</td><td>internlm2.5-7b</td><td>Yi1.5-9B</td><td>gemma2-9b</td><td>Llama3.1-8B</td><td>360Zhinao2-7B</td>
|
88 |
+
</tr>
|
89 |
+
<tr>
|
90 |
+
<td rowspan="5">Exam</td><td>ceval</td><td>zh</td><td>75.83</td><td>81.41</td><td>77.71</td><td>73.51</td><td>56.36</td><td>51.67</td><td><strong>83.04</strong></td>
|
91 |
+
</tr>
|
92 |
+
<tr>
|
93 |
+
<td>mmlu</td><td>en</td><td>75.5</td><td>75.5</td><td>71.55</td><td>71.43</td><td>72.22</td><td>66.75</td><td>67.84</td>
|
94 |
+
</tr>
|
95 |
+
<tr>
|
96 |
+
<td>cmmlu</td><td>zh</td><td>74.24</td><td>81.79</td><td>78.77</td><td>74.2</td><td>58.89</td><td>52.49</td><td>73.8</td>
|
97 |
+
</tr>
|
98 |
+
<tr>
|
99 |
+
<td>ARC-c</td><td>en</td><td>94.92</td><td>80</td><td>85.08</td><td>87.46</td><td>77.63</td><td>80.68</td><td>87.12</td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td>ARC-e</td><td>en</td><td>98.41</td><td>84.83</td><td>95.24</td><td>94.53</td><td>78.84</td><td>89.77</td><td>92.77</td>
|
103 |
+
</tr>
|
104 |
+
<tr>
|
105 |
+
<td rowspan="2">Language</td><td>WiC</td><td>en</td><td>51.57</td><td>52.82</td><td>50.78</td><td>50.63</td><td>50.47</td><td>50</td><td>49.84</td>
|
106 |
+
</tr>
|
107 |
+
<tr>
|
108 |
+
<td>WSC</td><td>en</td><td>68.27</td><td>68.27</td><td>69.23</td><td>66.35</td><td>68.27</td><td>67.31</td><td>65.38</td>
|
109 |
+
</tr>
|
110 |
+
<tr>
|
111 |
+
<td rowspan="2">Knowledge</td>
|
112 |
+
<td>BoolQ</td><td>en</td><td>81.8</td><td>83.88</td><td>89.51</td><td>84.46</td><td>85.6</td><td>82.2</td><td>88.29</td>
|
113 |
+
</tr>
|
114 |
+
<tr>
|
115 |
+
<td>commonsense_qa</td><td>en</td><td>71.17</td><td>73.22</td><td>68.55</td><td>71.58</td><td>68.47</td><td>71.25</td><td>69.78</td>
|
116 |
+
</tr>
|
117 |
+
<tr>
|
118 |
+
<td rowspan="6">Understanding</td>
|
119 |
+
<td>C3</td><td>zh</td><td>91.51</td><td>92</td><td>93.04</td><td>85.86</td><td>81.64</td><td>83.51</td><td><strong>93.26</strong></td>
|
120 |
+
</tr>
|
121 |
+
<tr>
|
122 |
+
<td>race-middle</td><td>en</td><td>91.99</td><td>91.02</td><td>92.06</td><td>91.16</td><td>88.09</td><td>81.69</td><td>90.46</td>
|
123 |
+
</tr>
|
124 |
+
<tr>
|
125 |
+
<td>race-high</td><td>en</td><td>90.71</td><td>87.91</td><td>90.08</td><td>88.34</td><td>82.08</td><td>78.73</td><td>86.74</td>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<td>lcsts</td><td>zh</td><td>18.29</td><td>15.82</td><td>15.96</td><td>16.49</td><td>10.62</td><td>17.29</td><td><strong>18.61</strong></td>
|
129 |
+
</tr>
|
130 |
+
<tr>
|
131 |
+
<td>eprstmt-dev</td><td>zh</td><td>91.88</td><td>86.88</td><td>91.25</td><td>91.88</td><td>48.12</td><td>83.12</td><td>90</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td>lambada</td><td>en</td><td>71.67</td><td>71.14</td><td>69.98</td><td>70.64</td><td>75.43</td><td>74.23</td><td>72.56</td>
|
135 |
+
</tr>
|
136 |
+
<tr>
|
137 |
+
<td rowspan="3">Reasoning</td>
|
138 |
+
<td>hellaswag</td><td>en</td><td>70.25</td><td>72.76</td><td>70.38</td><td>71.55</td><td>66.83</td><td>74.65</td><td>71.49</td>
|
139 |
+
</tr>
|
140 |
+
<tr>
|
141 |
+
<td>siqa</td><td>en</td><td>81.73</td><td>72.52</td><td>78.97</td><td>76.2</td><td>58.96</td><td>64.18</td><td>77.12</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>bbh</td><td>en</td><td>73.68</td><td>54.63</td><td>59.43</td><td>67.86</td><td>68.45</td><td>59.9</td><td>46.54</td>
|
145 |
+
</tr>
|
146 |
+
<tr>
|
147 |
+
<td rowspan="2">Code</td>
|
148 |
+
<td>humaneval</td><td>en</td><td>69.51</td><td>75</td><td>60.37</td><td>26.22</td><td>5.49</td><td>27.44</td><td>60.98</td>
|
149 |
+
</tr>
|
150 |
+
<tr>
|
151 |
+
<td>mbpp</td><td>en</td><td>60</td><td>60</td><td>43.6</td><td>56.8</td><td>51.2</td><td>42.6</td><td>54</td>
|
152 |
+
</tr>
|
153 |
+
<tr>
|
154 |
+
<td rowspan="2">Math</td>
|
155 |
+
<td>math</td><td>en</td><td>26.86</td><td>38</td><td>27.14</td><td>27.06</td><td>28.52</td><td>15.32</td><td><strong>38.34</strong></td>
|
156 |
+
</tr>
|
157 |
+
<tr>
|
158 |
+
<td>gsm8k</td><td>en</td><td>78.54</td><td>79.76</td><td>52.54</td><td>71.11</td><td>73.09</td><td>56.25</td><td>75.51</td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td rowspan="2">Overall</td>
|
162 |
+
<td>avg_zh</td><td></td><td>70.35</td><td>71.58</td><td>71.35</td><td>68.39</td><td>51.13</td><td>57.62</td><td><strong>71.74</strong></td>
|
163 |
+
</tr>
|
164 |
+
<tr>
|
165 |
+
<td>avg_all</td><td></td><td>73.11</td><td>71.78</td><td>69.60</td><td>68.88</td><td>61.60</td><td>62.32</td><td>70.61</td>
|
166 |
+
</tr>
|
167 |
+
</table>
|
168 |
+
|
169 |
+
|
170 |
+
<br>
|
171 |
+
|
172 |
+
# Quickstart
|
173 |
+
We provide simple examples illustrating the use of 360Zhinao2-7B-Base and 360Zhinao2-7B-Chat on 🤖ModelScope and 🤗Transformers.
|
174 |
+
|
175 |
+
## Dependency Installation
|
176 |
+
- python >= 3.8
|
177 |
+
- pytorch >= 2.0
|
178 |
+
- transformers >= 4.37.2
|
179 |
+
- CUDA >= 11.4
|
180 |
+
|
181 |
+
```shell
|
182 |
+
pip install -r requirements.txt
|
183 |
+
```
|
184 |
+
|
185 |
+
Optionally, we recommend installing Flash-Attention 2 to improve performance and reduce memory footprint.
|
186 |
+
|
187 |
+
>flash-attn >= 2.3.6
|
188 |
+
```shell
|
189 |
+
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
|
190 |
+
```
|
191 |
+
|
192 |
+
## 🤗 Transformers
|
193 |
+
### Demonstration of Base Model Inference
|
194 |
+
|
195 |
+
```python
|
196 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
197 |
+
from transformers.generation import GenerationConfig
|
198 |
+
|
199 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
|
200 |
+
|
201 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
202 |
+
MODEL_NAME_OR_PATH,
|
203 |
+
trust_remote_code=True)
|
204 |
+
|
205 |
+
model = AutoModelForCausalLM.from_pretrained(
|
206 |
+
MODEL_NAME_OR_PATH,
|
207 |
+
device_map="auto",
|
208 |
+
trust_remote_code=True)
|
209 |
+
|
210 |
+
generation_config = GenerationConfig.from_pretrained(
|
211 |
+
MODEL_NAME_OR_PATH,
|
212 |
+
trust_remote_code=True)
|
213 |
+
|
214 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
215 |
+
inputs = inputs.to(model.device)
|
216 |
+
|
217 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
218 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
219 |
+
```
|
220 |
+
### Demonstration of Chat Model Inference
|
221 |
+
|
222 |
+
```python
|
223 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
224 |
+
from transformers.generation import GenerationConfig
|
225 |
+
|
226 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
|
227 |
+
|
228 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
229 |
+
MODEL_NAME_OR_PATH,
|
230 |
+
trust_remote_code=True)
|
231 |
+
|
232 |
+
model = AutoModelForCausalLM.from_pretrained(
|
233 |
+
MODEL_NAME_OR_PATH,
|
234 |
+
device_map="auto",
|
235 |
+
trust_remote_code=True)
|
236 |
+
|
237 |
+
generation_config = GenerationConfig.from_pretrained(
|
238 |
+
MODEL_NAME_OR_PATH,
|
239 |
+
trust_remote_code=True)
|
240 |
+
|
241 |
+
messages = []
|
242 |
+
#round-1
|
243 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
244 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
245 |
+
messages.append({"role": "assistant", "content": response})
|
246 |
+
print(messages)
|
247 |
+
|
248 |
+
#round-2
|
249 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
250 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
251 |
+
messages.append({"role": "assistant", "content": response})
|
252 |
+
print(messages)
|
253 |
+
```
|
254 |
+
|
255 |
+
## 🤖 ModelScope
|
256 |
+
### Demonstration of Base Model Inference
|
257 |
+
|
258 |
+
```python
|
259 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
260 |
+
from modelscope import GenerationConfig
|
261 |
+
|
262 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
|
263 |
+
|
264 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
265 |
+
MODEL_NAME_OR_PATH,
|
266 |
+
trust_remote_code=True)
|
267 |
+
|
268 |
+
model = AutoModelForCausalLM.from_pretrained(
|
269 |
+
MODEL_NAME_OR_PATH,
|
270 |
+
device_map="auto",
|
271 |
+
trust_remote_code=True)
|
272 |
+
|
273 |
+
generation_config = GenerationConfig.from_pretrained(
|
274 |
+
MODEL_NAME_OR_PATH,
|
275 |
+
trust_remote_code=True)
|
276 |
+
|
277 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
278 |
+
inputs = inputs.to(model.device)
|
279 |
+
|
280 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
281 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
282 |
+
```
|
283 |
+
|
284 |
+
### Demonstration of Chat Model Inference
|
285 |
+
|
286 |
+
```python
|
287 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
288 |
+
from modelscope import GenerationConfig
|
289 |
+
|
290 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
|
291 |
+
|
292 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
293 |
+
MODEL_NAME_OR_PATH,
|
294 |
+
trust_remote_code=True)
|
295 |
+
|
296 |
+
model = AutoModelForCausalLM.from_pretrained(
|
297 |
+
MODEL_NAME_OR_PATH,
|
298 |
+
device_map="auto",
|
299 |
+
trust_remote_code=True)
|
300 |
+
|
301 |
+
generation_config = GenerationConfig.from_pretrained(
|
302 |
+
MODEL_NAME_OR_PATH,
|
303 |
+
trust_remote_code=True)
|
304 |
+
|
305 |
+
messages = []
|
306 |
+
#round-1
|
307 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
308 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
309 |
+
messages.append({"role": "assistant", "content": response})
|
310 |
+
print(messages)
|
311 |
+
|
312 |
+
#round-2
|
313 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
314 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
315 |
+
messages.append({"role": "assistant", "content": response})
|
316 |
+
print(messages)
|
317 |
+
```
|
318 |
+
|
319 |
+
## CLI Demo
|
320 |
+
Use terminal for command-line interface:
|
321 |
+
|
322 |
+
```shell
|
323 |
+
python cli_demo.py
|
324 |
+
```
|
325 |
+
<p align="center">
|
326 |
+
<img src="assets/cli_demo.gif" width="600" />
|
327 |
+
<p>
|
328 |
+
|
329 |
+
Note: for Mac users, `device = 'mps'` is not supported yet.
|
330 |
+
|
331 |
+
## Web Demo
|
332 |
+
|
333 |
+
```shell
|
334 |
+
streamlit run web_demo.py
|
335 |
+
```
|
336 |
+
<p align="center">
|
337 |
+
<img src="assets/web_demo.gif" width="600" />
|
338 |
+
<p>
|
339 |
+
|
340 |
+
## API Demo
|
341 |
+
Launch api:
|
342 |
+
```shell
|
343 |
+
python openai_api.py
|
344 |
+
```
|
345 |
+
|
346 |
+
Then request with parameters:
|
347 |
+
```shell
|
348 |
+
curl 'http://localhost:8360/v1/chat/completions' \
|
349 |
+
-H 'Content-Type: application/json' \
|
350 |
+
-d '{
|
351 |
+
"max_new_tokens": 200,
|
352 |
+
"do_sample": true,
|
353 |
+
"top_k": 0,
|
354 |
+
"top_p": 0.8,
|
355 |
+
"temperature": 1.0,
|
356 |
+
"repetition_penalty": 1.0,
|
357 |
+
"messages": [
|
358 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
359 |
+
{"role": "user", "content": "你好"}
|
360 |
+
]
|
361 |
+
}'
|
362 |
+
```
|
363 |
+
|
364 |
+
<br>
|
365 |
+
|
366 |
+
# Model Inference
|
367 |
+
## Quantization
|
368 |
+
We provide quantization schemes based on AutoGPTQ and release the Int4 quantization models.
|
369 |
+
|
370 |
+
## Deployment
|
371 |
+
### vLLM Installation
|
372 |
+
We recommend using `vLLM==0.3.3`.
|
373 |
+
|
374 |
+
If you are using **CUDA 12.1 and PyTorch 2.1**, you can install vLLM directly with:
|
375 |
+
```shell
|
376 |
+
pip install vllm==0.3.3
|
377 |
+
```
|
378 |
+
|
379 |
+
Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html).
|
380 |
+
|
381 |
+
After installation, perform the following steps:
|
382 |
+
1. Copy `vllm/zhinao.py` into `vllm/model_executor/models` in your vllm installation directory (in python/conda env).
|
383 |
+
2. Copy `vllm/serving_chat.py` into `vllm/entrypoints/openai` in your vllm installation directory.
|
384 |
+
3. Then add a line in `vllm/model_executor/models/__init__.py`
|
385 |
+
|
386 |
+
```shell
|
387 |
+
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
388 |
+
```
|
389 |
+
|
390 |
+
### vLLM Service Start
|
391 |
+
|
392 |
+
Start the service:
|
393 |
+
```shell
|
394 |
+
python -m vllm.entrypoints.openai.api_server \
|
395 |
+
--served-model-name 360Zhinao2-7B-Chat-4K \
|
396 |
+
--model qihoo360/360Zhinao2-7B-Chat-4K \
|
397 |
+
--trust-remote-code \
|
398 |
+
--tensor-parallel-size 1 \
|
399 |
+
--max-model-len 4096 \
|
400 |
+
--host 0.0.0.0 \
|
401 |
+
--port 8360
|
402 |
+
```
|
403 |
+
|
404 |
+
Use curl to request the service:
|
405 |
+
```shell
|
406 |
+
curl http://localhost:8360/v1/chat/completions \
|
407 |
+
-H "Content-Type: application/json" \
|
408 |
+
-d '{
|
409 |
+
"model": "360Zhinao2-7B-Chat-4K",
|
410 |
+
"max_tokens": 200,
|
411 |
+
"top_k": -1,
|
412 |
+
"top_p": 0.8,
|
413 |
+
"temperature": 1.0,
|
414 |
+
"presence_penalty": 0.0,
|
415 |
+
"frequency_penalty": 0.0,
|
416 |
+
"messages": [
|
417 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
418 |
+
{"role": "user", "content": "你好"}
|
419 |
+
],
|
420 |
+
"stop": [
|
421 |
+
"<eod>",
|
422 |
+
"<|im_end|>",
|
423 |
+
"<|im_start|>"
|
424 |
+
]
|
425 |
+
}'
|
426 |
+
```
|
427 |
+
Use python to request the service:
|
428 |
+
```python
|
429 |
+
from openai import OpenAI
|
430 |
+
openai_api_key = "EMPTY"
|
431 |
+
openai_api_base = "http://localhost:8360/v1"
|
432 |
+
|
433 |
+
client = OpenAI(
|
434 |
+
api_key=openai_api_key,
|
435 |
+
base_url=openai_api_base,
|
436 |
+
)
|
437 |
+
|
438 |
+
chat_response = client.chat.completions.create(
|
439 |
+
model="360Zhinao2-7B-Chat-4K",
|
440 |
+
messages=[
|
441 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
442 |
+
{"role": "user", "content": "你好"},
|
443 |
+
],
|
444 |
+
stop=[
|
445 |
+
"<eod>",
|
446 |
+
"<|im_end|>",
|
447 |
+
"<|im_start|>"
|
448 |
+
],
|
449 |
+
presence_penalty=0.0,
|
450 |
+
frequency_penalty=0.0
|
451 |
+
)
|
452 |
+
print("Chat response:", chat_response)
|
453 |
+
```
|
454 |
+
|
455 |
+
> If you need to enable repetition penalty, we recommend setting `presence_penalty` and `frequency_penalty` instead of `repetition_penalty`.
|
456 |
+
|
457 |
+
|
458 |
+
<br>
|
459 |
+
|
460 |
+
# Model Finetune
|
461 |
+
## Training data
|
462 |
+
|
463 |
+
Training Data: `data/training_data_sample.json`. This example data has 10,000 rows sampled from [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) with converted format.
|
464 |
+
|
465 |
+
Data Format:
|
466 |
+
```json
|
467 |
+
[
|
468 |
+
{
|
469 |
+
"id": 1,
|
470 |
+
"conversations": [
|
471 |
+
{
|
472 |
+
"from": "system",
|
473 |
+
"value": "You are a helpful assistant."
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"from": "user",
|
477 |
+
"value": "您好啊"
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"from": "assistant",
|
481 |
+
"value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
|
482 |
+
}
|
483 |
+
]
|
484 |
+
}
|
485 |
+
]
|
486 |
+
```
|
487 |
+
## Finetuning scripts
|
488 |
+
```shell
|
489 |
+
set -x
|
490 |
+
|
491 |
+
HOSTFILE=hostfile
|
492 |
+
DS_CONFIG=./finetune/ds_config_zero2.json
|
493 |
+
|
494 |
+
# PARAMS
|
495 |
+
LR=5e-6
|
496 |
+
EPOCHS=3
|
497 |
+
MAX_LEN=4096
|
498 |
+
BATCH_SIZE=4
|
499 |
+
NUM_NODES=1
|
500 |
+
NUM_GPUS=8
|
501 |
+
MASTER_PORT=29500
|
502 |
+
|
503 |
+
IS_CONCAT=False # Whether to concatenate to maximum length (MAX_LEN)
|
504 |
+
|
505 |
+
DATA_PATH="./data/training_data_sample.json"
|
506 |
+
MODEL_PATH="qihoo360/360Zhinao2-7B-Base"
|
507 |
+
OUTPUT_DIR="./outputs/"
|
508 |
+
|
509 |
+
deepspeed --hostfile ${HOSTFILE} \
|
510 |
+
--master_port ${MASTER_PORT} \
|
511 |
+
--num_nodes ${NUM_NODES} \
|
512 |
+
--num_gpus ${NUM_GPUS} \
|
513 |
+
finetune.py \
|
514 |
+
--report_to "tensorboard" \
|
515 |
+
--data_path ${DATA_PATH} \
|
516 |
+
--model_name_or_path ${MODEL_PATH} \
|
517 |
+
--output_dir ${OUTPUT_DIR} \
|
518 |
+
--model_max_length ${MAX_LEN} \
|
519 |
+
--num_train_epochs ${EPOCHS} \
|
520 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
521 |
+
--gradient_accumulation_steps 1 \
|
522 |
+
--save_strategy steps \
|
523 |
+
--save_steps 200 \
|
524 |
+
--learning_rate ${LR} \
|
525 |
+
--lr_scheduler_type cosine \
|
526 |
+
--adam_beta1 0.9 \
|
527 |
+
--adam_beta2 0.95 \
|
528 |
+
--adam_epsilon 1e-8 \
|
529 |
+
--max_grad_norm 1.0 \
|
530 |
+
--weight_decay 0.1 \
|
531 |
+
--warmup_ratio 0.01 \
|
532 |
+
--gradient_checkpointing True \
|
533 |
+
--bf16 True \
|
534 |
+
--tf32 True \
|
535 |
+
--deepspeed ${DS_CONFIG} \
|
536 |
+
--is_concat ${IS_CONCAT} \
|
537 |
+
--logging_steps 1 \
|
538 |
+
--log_on_each_node False
|
539 |
+
```
|
540 |
+
```shell
|
541 |
+
bash finetune/ds_finetune.sh
|
542 |
+
```
|
543 |
+
- Configuring `HOSTFILE` switches between single-machine and multi-machine training.
|
544 |
+
- configuring `ds_config` switches between zero1, zero2 and zero3.
|
545 |
+
- `fp16, bf16` could configure mixed precision training. bf16 is recommended to be consistent with the pretrained model.
|
546 |
+
- `is_concat` configures whether the training data is concatenated or not.
|
547 |
+
|
548 |
+
<br>
|
549 |
+
|
550 |
+
# License
|
551 |
+
|
552 |
+
The source code of this repository follows the open-source license Apache 2.0.
|
553 |
+
|
554 |
+
360Zhinao open-source models support free commercial use. It is not necessary for you to submit a request for commercial usage.
|
README_CN.md
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- qihoo360
|
9 |
+
- 奇虎360
|
10 |
+
- zhinao
|
11 |
+
- 360Zhinao
|
12 |
+
- pretrain
|
13 |
+
---
|
14 |
+
|
15 |
+
<p align="left">
|
16 |
+
中文 |   <a href="./README.md">English</a></a> 
|
17 |
+
</p>
|
18 |
+
<br>
|
19 |
+
|
20 |
+
<div align="center">
|
21 |
+
<h1>
|
22 |
+
360智脑
|
23 |
+
</h1>
|
24 |
+
</div>
|
25 |
+
<div align="center">
|
26 |
+
🤗 <a href="https://huggingface.co/qihoo360">Hugging Face</a>   |   
|
27 |
+
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
28 |
+
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>  
|
29 |
+
</div>
|
30 |
+
<br>
|
31 |
+
<p align="center">
|
32 |
+
欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。
|
33 |
+
</p>
|
34 |
+
|
35 |
+
<br>
|
36 |
+
|
37 |
+
# 模型介绍
|
38 |
+
🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
|
39 |
+
- **360Zhinao2-7B-Base**
|
40 |
+
- **360Zhinao2-7B-Chat-4K**
|
41 |
+
- **360Zhinao2-7B-Chat-32K**
|
42 |
+
- **360Zhinao2-7B-Chat-360K**
|
43 |
+
|
44 |
+
360智脑大模型特点如下:
|
45 |
+
- **基础模型**:采⽤当前主流的两阶段训练⽅法,第⼀阶段采用cosine学习率总共训练10T
|
46 |
+
token,第二阶段我们加⼤了⾼质量数据的占⽐,训练了100B⾼质量token,学习率LR直接decay到0。**360Zhinao2-7B总共训练数据量达10.1T token**。
|
47 |
+
- **对话模型**:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。
|
48 |
+
|
49 |
+
<br>
|
50 |
+
|
51 |
+
# 更新信息
|
52 |
+
- [2024.11.18] 🔥🔥🔥我们发布了360Zhinao2-7B,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
|
53 |
+
- [2024.05.23] 我们发布了360Zhinao-search以及360Zhinao-1.8B-Reranking两个模型,分别在[C-MTEB 榜单](https://huggingface.co/spaces/mteb/leaderboard)的Retrieval和Reranking任务上排名第一。
|
54 |
+
- [2024.05.20] 我们将llama3的窗口长度扩展到360k并发布了**llama3-8B-360Zhinao-360k-Instruct**<a href="https://huggingface.co/qihoo360/llama3-8B-360Zhinao-360k-Instruct">🤗</a>
|
55 |
+
- [2024.04.12] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
|
56 |
+
技术报告详见[arXiv](https://arxiv.org/abs/2405.13386)。
|
57 |
+
|
58 |
+
<br>
|
59 |
+
|
60 |
+
# 目录
|
61 |
+
- [下载地址](#下载地址)
|
62 |
+
- [模型评估](#模型评估)
|
63 |
+
- [快速开始](#快速开始)
|
64 |
+
- [模型推理](#模型推理)
|
65 |
+
- [模型微调](#模型微调)
|
66 |
+
- [许可证](#许可证)
|
67 |
+
|
68 |
+
<br>
|
69 |
+
|
70 |
+
# 下载地址
|
71 |
+
本次发布版本和下载链接见下表:
|
72 |
+
| Size | Model | BF16 | Int4|
|
73 |
+
|:-:|-|:-:|:-:|
|
74 |
+
| 7B | 360Zhinao2-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Base">🤗</a> | |
|
75 |
+
| 7B | 360Zhinao2-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K-Int4">🤗</a> |
|
76 |
+
| 7B | 360Zhinao2-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K-Int4">🤗</a> |
|
77 |
+
| 7B | 360Zhinao2-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K-Int4">🤗</a> |
|
78 |
+
|
79 |
+
<br>
|
80 |
+
|
81 |
+
# 模型评估
|
82 |
+
我们使⽤了开源⼯具opencompass对模型进⾏评估,对⽐了近半年国内外开源的10B以下模型,
|
83 |
+
360Zhinao2-7B具备较强的竞争⼒。360Zhinao2-7B在CEval(中⽂
|
84 |
+
考试)、C3(中⽂阅读理解)、lcsts(中⽂短⽂本摘要)等中⽂benchmark上表现不俗,中⽂
|
85 |
+
benchmark均分排名第⼀。在挑战性的竞赛数学数据集math上,同样排名第⼀。**360Zhinao2-7B模
|
86 |
+
型在中⽂处理能⼒、复杂数学推理能⼒两个⽅⾯,具备优势。**
|
87 |
+
|
88 |
+
<table>
|
89 |
+
<tr>
|
90 |
+
<td>Type</td><td>Datasets</td><td>language</td><td>glm4-9b</td><td>Qwen2.5-7B</td><td>internlm2.5-7b</td><td>Yi1.5-9B</td><td>gemma2-9b</td><td>Llama3.1-8B</td><td>360Zhinao2-7B</td>
|
91 |
+
</tr>
|
92 |
+
<tr>
|
93 |
+
<td rowspan="5">Exam</td><td>ceval</td><td>zh</td><td>75.83</td><td>81.41</td><td>77.71</td><td>73.51</td><td>56.36</td><td>51.67</td><td><strong>83.04</strong></td>
|
94 |
+
</tr>
|
95 |
+
<tr>
|
96 |
+
<td>mmlu</td><td>en</td><td>75.5</td><td>75.5</td><td>71.55</td><td>71.43</td><td>72.22</td><td>66.75</td><td>67.84</td>
|
97 |
+
</tr>
|
98 |
+
<tr>
|
99 |
+
<td>cmmlu</td><td>zh</td><td>74.24</td><td>81.79</td><td>78.77</td><td>74.2</td><td>58.89</td><td>52.49</td><td>73.8</td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td>ARC-c</td><td>en</td><td>94.92</td><td>80</td><td>85.08</td><td>87.46</td><td>77.63</td><td>80.68</td><td>87.12</td>
|
103 |
+
</tr>
|
104 |
+
<tr>
|
105 |
+
<td>ARC-e</td><td>en</td><td>98.41</td><td>84.83</td><td>95.24</td><td>94.53</td><td>78.84</td><td>89.77</td><td>92.77</td>
|
106 |
+
</tr>
|
107 |
+
<tr>
|
108 |
+
<td rowspan="2">Language</td><td>WiC</td><td>en</td><td>51.57</td><td>52.82</td><td>50.78</td><td>50.63</td><td>50.47</td><td>50</td><td>49.84</td>
|
109 |
+
</tr>
|
110 |
+
<tr>
|
111 |
+
<td>WSC</td><td>en</td><td>68.27</td><td>68.27</td><td>69.23</td><td>66.35</td><td>68.27</td><td>67.31</td><td>65.38</td>
|
112 |
+
</tr>
|
113 |
+
<tr>
|
114 |
+
<td rowspan="2">Knowledge</td>
|
115 |
+
<td>BoolQ</td><td>en</td><td>81.8</td><td>83.88</td><td>89.51</td><td>84.46</td><td>85.6</td><td>82.2</td><td>88.29</td>
|
116 |
+
</tr>
|
117 |
+
<tr>
|
118 |
+
<td>commonsense_qa</td><td>en</td><td>71.17</td><td>73.22</td><td>68.55</td><td>71.58</td><td>68.47</td><td>71.25</td><td>69.78</td>
|
119 |
+
</tr>
|
120 |
+
<tr>
|
121 |
+
<td rowspan="6">Understanding</td>
|
122 |
+
<td>C3</td><td>zh</td><td>91.51</td><td>92</td><td>93.04</td><td>85.86</td><td>81.64</td><td>83.51</td><td><strong>93.26</strong></td>
|
123 |
+
</tr>
|
124 |
+
<tr>
|
125 |
+
<td>race-middle</td><td>en</td><td>91.99</td><td>91.02</td><td>92.06</td><td>91.16</td><td>88.09</td><td>81.69</td><td>90.46</td>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<td>race-high</td><td>en</td><td>90.71</td><td>87.91</td><td>90.08</td><td>88.34</td><td>82.08</td><td>78.73</td><td>86.74</td>
|
129 |
+
</tr>
|
130 |
+
<tr>
|
131 |
+
<td>lcsts</td><td>zh</td><td>18.29</td><td>15.82</td><td>15.96</td><td>16.49</td><td>10.62</td><td>17.29</td><td><strong>18.61</strong></td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td>eprstmt-dev</td><td>zh</td><td>91.88</td><td>86.88</td><td>91.25</td><td>91.88</td><td>48.12</td><td>83.12</td><td>90</td>
|
135 |
+
</tr>
|
136 |
+
<tr>
|
137 |
+
<td>lambada</td><td>en</td><td>71.67</td><td>71.14</td><td>69.98</td><td>70.64</td><td>75.43</td><td>74.23</td><td>72.56</td>
|
138 |
+
</tr>
|
139 |
+
<tr>
|
140 |
+
<td rowspan="3">Reasoning</td>
|
141 |
+
<td>hellaswag</td><td>en</td><td>70.25</td><td>72.76</td><td>70.38</td><td>71.55</td><td>66.83</td><td>74.65</td><td>71.49</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>siqa</td><td>en</td><td>81.73</td><td>72.52</td><td>78.97</td><td>76.2</td><td>58.96</td><td>64.18</td><td>77.12</td>
|
145 |
+
</tr>
|
146 |
+
<tr>
|
147 |
+
<td>bbh</td><td>en</td><td>73.68</td><td>54.63</td><td>59.43</td><td>67.86</td><td>68.45</td><td>59.9</td><td>46.54</td>
|
148 |
+
</tr>
|
149 |
+
<tr>
|
150 |
+
<td rowspan="2">Code</td>
|
151 |
+
<td>humaneval</td><td>en</td><td>69.51</td><td>75</td><td>60.37</td><td>26.22</td><td>5.49</td><td>27.44</td><td>60.98</td>
|
152 |
+
</tr>
|
153 |
+
<tr>
|
154 |
+
<td>mbpp</td><td>en</td><td>60</td><td>60</td><td>43.6</td><td>56.8</td><td>51.2</td><td>42.6</td><td>54</td>
|
155 |
+
</tr>
|
156 |
+
<tr>
|
157 |
+
<td rowspan="2">Math</td>
|
158 |
+
<td>math</td><td>en</td><td>26.86</td><td>38</td><td>27.14</td><td>27.06</td><td>28.52</td><td>15.32</td><td><strong>38.34</strong></td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td>gsm8k</td><td>en</td><td>78.54</td><td>79.76</td><td>52.54</td><td>71.11</td><td>73.09</td><td>56.25</td><td>75.51</td>
|
162 |
+
</tr>
|
163 |
+
<tr>
|
164 |
+
<td rowspan="2">Overall</td>
|
165 |
+
<td>avg_zh</td><td></td><td>70.35</td><td>71.58</td><td>71.35</td><td>68.39</td><td>51.13</td><td>57.62</td><td><strong>71.74</strong></td>
|
166 |
+
</tr>
|
167 |
+
<tr>
|
168 |
+
<td>avg_all</td><td></td><td>73.11</td><td>71.78</td><td>69.60</td><td>68.88</td><td>61.60</td><td>62.32</td><td>70.61</td>
|
169 |
+
</tr>
|
170 |
+
</table>
|
171 |
+
|
172 |
+
## 基础模型
|
173 |
+
|
174 |
+
# 快速开始
|
175 |
+
简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao2-7B-Base和360Zhinao2-7B-Chat
|
176 |
+
|
177 |
+
## 依赖安装
|
178 |
+
- python 3.8 and above
|
179 |
+
- pytorch 2.0 and above
|
180 |
+
- transformers 4.37.2 and above
|
181 |
+
- CUDA 11.4 and above are recommended.
|
182 |
+
|
183 |
+
```shell
|
184 |
+
pip install -r requirements.txt
|
185 |
+
```
|
186 |
+
我们推荐安装flash-attention(当前已支持flash attention 2)来提高你的运行效率以及降低显存占用。(flash-attention只是可选项,不安装也可正常运行该项目)
|
187 |
+
|
188 |
+
>flash-attn >= 2.3.6
|
189 |
+
```shell
|
190 |
+
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
|
191 |
+
```
|
192 |
+
|
193 |
+
|
194 |
+
## 🤗 Transformers
|
195 |
+
### Base模型推理
|
196 |
+
|
197 |
+
此代码演示使用transformers快速使用360Zhinao2-7B-Base模型进行推理
|
198 |
+
```python
|
199 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
200 |
+
from transformers.generation import GenerationConfig
|
201 |
+
|
202 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
|
203 |
+
|
204 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
205 |
+
MODEL_NAME_OR_PATH,
|
206 |
+
trust_remote_code=True)
|
207 |
+
|
208 |
+
model = AutoModelForCausalLM.from_pretrained(
|
209 |
+
MODEL_NAME_OR_PATH,
|
210 |
+
device_map="auto",
|
211 |
+
trust_remote_code=True)
|
212 |
+
|
213 |
+
generation_config = GenerationConfig.from_pretrained(
|
214 |
+
MODEL_NAME_OR_PATH,
|
215 |
+
trust_remote_code=True)
|
216 |
+
|
217 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
218 |
+
inputs = inputs.to(model.device)
|
219 |
+
|
220 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
221 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
222 |
+
```
|
223 |
+
|
224 |
+
### Chat模型推理
|
225 |
+
|
226 |
+
此代码演示使用transformers快速使用360Zhinao2-7B-Chat-4K模型进行推理
|
227 |
+
```python
|
228 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
229 |
+
from transformers.generation import GenerationConfig
|
230 |
+
|
231 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
|
232 |
+
|
233 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
234 |
+
MODEL_NAME_OR_PATH,
|
235 |
+
trust_remote_code=True)
|
236 |
+
|
237 |
+
model = AutoModelForCausalLM.from_pretrained(
|
238 |
+
MODEL_NAME_OR_PATH,
|
239 |
+
device_map="auto",
|
240 |
+
trust_remote_code=True)
|
241 |
+
|
242 |
+
generation_config = GenerationConfig.from_pretrained(
|
243 |
+
MODEL_NAME_OR_PATH,
|
244 |
+
trust_remote_code=True)
|
245 |
+
|
246 |
+
messages = []
|
247 |
+
#round-1
|
248 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
249 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
250 |
+
messages.append({"role": "assistant", "content": response})
|
251 |
+
print(messages)
|
252 |
+
|
253 |
+
#round-2
|
254 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
255 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
256 |
+
messages.append({"role": "assistant", "content": response})
|
257 |
+
print(messages)
|
258 |
+
```
|
259 |
+
|
260 |
+
## 🤖 ModelScope
|
261 |
+
### Base模型推理
|
262 |
+
|
263 |
+
此代码演示使用ModelScope快速使用360Zhinao2-7B-Base模型进行推理
|
264 |
+
|
265 |
+
|
266 |
+
```python
|
267 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
268 |
+
from modelscope import GenerationConfig
|
269 |
+
|
270 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
|
271 |
+
|
272 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
273 |
+
MODEL_NAME_OR_PATH,
|
274 |
+
trust_remote_code=True)
|
275 |
+
|
276 |
+
model = AutoModelForCausalLM.from_pretrained(
|
277 |
+
MODEL_NAME_OR_PATH,
|
278 |
+
device_map="auto",
|
279 |
+
trust_remote_code=True)
|
280 |
+
|
281 |
+
generation_config = GenerationConfig.from_pretrained(
|
282 |
+
MODEL_NAME_OR_PATH,
|
283 |
+
trust_remote_code=True)
|
284 |
+
|
285 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
286 |
+
inputs = inputs.to(model.device)
|
287 |
+
|
288 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
289 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
290 |
+
```
|
291 |
+
|
292 |
+
### Chat模型推理
|
293 |
+
|
294 |
+
此代码演示使用ModelScope快速使用360Zhinao2-7B-Chat-4K模型进行推理
|
295 |
+
```python
|
296 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
297 |
+
from modelscope import GenerationConfig
|
298 |
+
|
299 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
|
300 |
+
|
301 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
302 |
+
MODEL_NAME_OR_PATH,
|
303 |
+
trust_remote_code=True)
|
304 |
+
|
305 |
+
model = AutoModelForCausalLM.from_pretrained(
|
306 |
+
MODEL_NAME_OR_PATH,
|
307 |
+
device_map="auto",
|
308 |
+
trust_remote_code=True)
|
309 |
+
|
310 |
+
generation_config = GenerationConfig.from_pretrained(
|
311 |
+
MODEL_NAME_OR_PATH,
|
312 |
+
trust_remote_code=True)
|
313 |
+
|
314 |
+
messages = []
|
315 |
+
#round-1
|
316 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
317 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
318 |
+
messages.append({"role": "assistant", "content": response})
|
319 |
+
print(messages)
|
320 |
+
|
321 |
+
#round-2
|
322 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
323 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
324 |
+
messages.append({"role": "assistant", "content": response})
|
325 |
+
print(messages)
|
326 |
+
```
|
327 |
+
|
328 |
+
## 终端 Demo
|
329 |
+
可使用终端交互实现快速体验
|
330 |
+
```shell
|
331 |
+
python cli_demo.py
|
332 |
+
```
|
333 |
+
<p align="center">
|
334 |
+
<img src="assets/cli_demo.gif" width="600" />
|
335 |
+
<p>
|
336 |
+
|
337 |
+
注:我们尚未支持Mac上`device = 'mps'`。
|
338 |
+
|
339 |
+
## 网页 Demo
|
340 |
+
也可使用网页交互实现快速体验
|
341 |
+
```shell
|
342 |
+
streamlit run web_demo.py
|
343 |
+
```
|
344 |
+
<p align="center">
|
345 |
+
<img src="assets/web_demo.gif" width="600" />
|
346 |
+
<p>
|
347 |
+
|
348 |
+
## API Demo
|
349 |
+
启动命令
|
350 |
+
```shell
|
351 |
+
python openai_api.py
|
352 |
+
```
|
353 |
+
|
354 |
+
请求参数
|
355 |
+
```shell
|
356 |
+
curl 'http://localhost:8360/v1/chat/completions' \
|
357 |
+
-H 'Content-Type: application/json' \
|
358 |
+
-d '{
|
359 |
+
"max_new_tokens": 200,
|
360 |
+
"do_sample": true,
|
361 |
+
"top_k": 0,
|
362 |
+
"top_p": 0.8,
|
363 |
+
"temperature": 1.0,
|
364 |
+
"repetition_penalty": 1.0,
|
365 |
+
"messages": [
|
366 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
367 |
+
{"role": "user", "content": "你好"}
|
368 |
+
]
|
369 |
+
}'
|
370 |
+
```
|
371 |
+
|
372 |
+
<br>
|
373 |
+
|
374 |
+
# 模型推理
|
375 |
+
## 模型量化
|
376 |
+
我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。
|
377 |
+
|
378 |
+
## 模型部署
|
379 |
+
### vLLM安装环境
|
380 |
+
如希望部署及加速推理,我们建议你使用 `vLLM==0.3.3`。
|
381 |
+
|
382 |
+
如果你使用**CUDA 12.1和PyTorch 2.1**,可以直接使用以下命令安装vLLM。
|
383 |
+
```shell
|
384 |
+
pip install vllm==0.3.3
|
385 |
+
```
|
386 |
+
|
387 |
+
否则请参考vLLM官方的[安装说明](https://docs.vllm.ai/en/latest/getting_started/installation.html)。
|
388 |
+
|
389 |
+
>安装完成后,还需要以下操作~
|
390 |
+
1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
|
391 |
+
2. 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。
|
392 |
+
3. 然后在vllm/model_executor/models/\_\_init\_\_.py文件增加一行代码
|
393 |
+
|
394 |
+
```shell
|
395 |
+
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
396 |
+
```
|
397 |
+
|
398 |
+
### vLLM服务启动
|
399 |
+
|
400 |
+
启动服务
|
401 |
+
```shell
|
402 |
+
python -m vllm.entrypoints.openai.api_server \
|
403 |
+
--served-model-name 360Zhinao2-7B-Chat-4K \
|
404 |
+
--model qihoo360/360Zhinao2-7B-Chat-4K \
|
405 |
+
--trust-remote-code \
|
406 |
+
--tensor-parallel-size 1 \
|
407 |
+
--max-model-len 4096 \
|
408 |
+
--host 0.0.0.0 \
|
409 |
+
--port 8360
|
410 |
+
```
|
411 |
+
|
412 |
+
使用curl请求服务
|
413 |
+
```shell
|
414 |
+
curl http://localhost:8360/v1/chat/completions \
|
415 |
+
-H "Content-Type: application/json" \
|
416 |
+
-d '{
|
417 |
+
"model": "360Zhinao2-7B-Chat-4K",
|
418 |
+
"max_tokens": 200,
|
419 |
+
"top_k": -1,
|
420 |
+
"top_p": 0.8,
|
421 |
+
"temperature": 1.0,
|
422 |
+
"presence_penalty": 0.0,
|
423 |
+
"frequency_penalty": 0.0,
|
424 |
+
"messages": [
|
425 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
426 |
+
{"role": "user", "content": "你好"}
|
427 |
+
],
|
428 |
+
"stop": [
|
429 |
+
"<eod>",
|
430 |
+
"<|im_end|>",
|
431 |
+
"<|im_start|>"
|
432 |
+
]
|
433 |
+
}'
|
434 |
+
```
|
435 |
+
使用python请求服务
|
436 |
+
```python
|
437 |
+
from openai import OpenAI
|
438 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
439 |
+
openai_api_key = "EMPTY"
|
440 |
+
openai_api_base = "http://localhost:8360/v1"
|
441 |
+
|
442 |
+
client = OpenAI(
|
443 |
+
api_key=openai_api_key,
|
444 |
+
base_url=openai_api_base,
|
445 |
+
)
|
446 |
+
|
447 |
+
chat_response = client.chat.completions.create(
|
448 |
+
model="360Zhinao2-7B-Chat-4K",
|
449 |
+
messages=[
|
450 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
451 |
+
{"role": "user", "content": "你好"},
|
452 |
+
],
|
453 |
+
stop=[
|
454 |
+
"<eod>",
|
455 |
+
"<|im_end|>",
|
456 |
+
"<|im_start|>"
|
457 |
+
],
|
458 |
+
presence_penalty=0.0,
|
459 |
+
frequency_penalty=0.0
|
460 |
+
)
|
461 |
+
print("Chat response:", chat_response)
|
462 |
+
```
|
463 |
+
|
464 |
+
> 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。
|
465 |
+
|
466 |
+
<br>
|
467 |
+
|
468 |
+
# 模型微调
|
469 |
+
## 训练数据
|
470 |
+
|
471 |
+
我们提供了微调训练样例数据 data/test.json,该样例数据是从 [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) 采样出 1 万条,并且做了格式转换。
|
472 |
+
|
473 |
+
数据格式:
|
474 |
+
```json
|
475 |
+
[
|
476 |
+
{
|
477 |
+
"id": 1,
|
478 |
+
"conversations": [
|
479 |
+
{
|
480 |
+
"from": "system",
|
481 |
+
"value": "You are a helpful assistant."
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"from": "user",
|
485 |
+
"value": "您好啊"
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"from": "assistant",
|
489 |
+
"value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
|
490 |
+
}
|
491 |
+
]
|
492 |
+
}
|
493 |
+
]
|
494 |
+
```
|
495 |
+
|
496 |
+
## 微调训练
|
497 |
+
训练脚本如下:
|
498 |
+
```shell
|
499 |
+
set -x
|
500 |
+
|
501 |
+
HOSTFILE=hostfile
|
502 |
+
DS_CONFIG=./finetune/ds_config_zero2.json
|
503 |
+
|
504 |
+
# PARAMS
|
505 |
+
LR=5e-6
|
506 |
+
EPOCHS=3
|
507 |
+
MAX_LEN=4096
|
508 |
+
BATCH_SIZE=4
|
509 |
+
NUM_NODES=1
|
510 |
+
NUM_GPUS=8
|
511 |
+
MASTER_PORT=29500
|
512 |
+
|
513 |
+
IS_CONCAT=False # 是否数据拼接到最大长度(MAX_LEN)
|
514 |
+
|
515 |
+
DATA_PATH="./data/training_data_sample.json"
|
516 |
+
MODEL_PATH="qihoo360/360Zhinao2-7B-Base"
|
517 |
+
OUTPUT_DIR="./outputs/"
|
518 |
+
|
519 |
+
deepspeed --hostfile ${HOSTFILE} \
|
520 |
+
--master_port ${MASTER_PORT} \
|
521 |
+
--num_nodes ${NUM_NODES} \
|
522 |
+
--num_gpus ${NUM_GPUS} \
|
523 |
+
finetune.py \
|
524 |
+
--report_to "tensorboard" \
|
525 |
+
--data_path ${DATA_PATH} \
|
526 |
+
--model_name_or_path ${MODEL_PATH} \
|
527 |
+
--output_dir ${OUTPUT_DIR} \
|
528 |
+
--model_max_length ${MAX_LEN} \
|
529 |
+
--num_train_epochs ${EPOCHS} \
|
530 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
531 |
+
--gradient_accumulation_steps 1 \
|
532 |
+
--save_strategy steps \
|
533 |
+
--save_steps 200 \
|
534 |
+
--learning_rate ${LR} \
|
535 |
+
--lr_scheduler_type cosine \
|
536 |
+
--adam_beta1 0.9 \
|
537 |
+
--adam_beta2 0.95 \
|
538 |
+
--adam_epsilon 1e-8 \
|
539 |
+
--max_grad_norm 1.0 \
|
540 |
+
--weight_decay 0.1 \
|
541 |
+
--warmup_ratio 0.01 \
|
542 |
+
--gradient_checkpointing True \
|
543 |
+
--bf16 True \
|
544 |
+
--tf32 True \
|
545 |
+
--deepspeed ${DS_CONFIG} \
|
546 |
+
--is_concat ${IS_CONCAT} \
|
547 |
+
--logging_steps 1 \
|
548 |
+
--log_on_each_node False
|
549 |
+
```
|
550 |
+
```shell
|
551 |
+
bash finetune/ds_finetune.sh
|
552 |
+
```
|
553 |
+
- 可通过配置hostfile,实现单机、多机训练。
|
554 |
+
- 可通过配置ds_config,实现zero2、zero3。
|
555 |
+
- 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
|
556 |
+
- 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。
|
557 |
+
|
558 |
+
<br>
|
559 |
+
|
560 |
+
# 许可证
|
561 |
+
|
562 |
+
本仓库源码遵循开源许可证Apache 2.0。
|
563 |
+
|
564 |
+
360智脑开源模型支持免费商用,无需向我们进行特殊申请。
|