import os import torch import base64 import tiktoken from typing import Collection, Optional, Dict, List, Set, Tuple, Union from transformers import PreTrainedTokenizer from transformers.utils import PaddingStrategy from transformers.tokenization_utils import PreTrainedTokenizer PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" class SPTokenizer: def __init__(self, model_path): self.vocab_file = model_path self.pad_token = '' self.unk_token = '' self.mask_token = '' self.eod_token = '' self.eop_token = '' self.im_start_token = '<|im_start|>' self.im_end_token = '<|im_end|>' ## special_tokens self.SPECIAL_TOKENS = ( self.pad_token, self.unk_token, self.mask_token, self.eod_token, self.eop_token, '[space2]', '[space3]', '[space4]', '[space8]', self.im_start_token, self.im_end_token ) self.bulid_tokenizer() self.out = self.output_core_token() self.token2strs = { "[space2]": " ", "[space3]": " ", "[space4]": " ", "[space8]": " ", } self.str2tokens = {v: k for k, v in self.token2strs.items()} self.sorted_strs = sorted(list(self.str2tokens.keys()), key=lambda x: len(x), reverse=True) ## skip_special_tokens self.decode_skip_special_tokens = [ self.pad_token, self.unk_token, self.mask_token, self.eod_token, self.eop_token, self.im_start_token, self.im_end_token] self.decode_skip_special_tokens_ids = [self.convert_token_to_id(token) for token in self.decode_skip_special_tokens] def _load_tiktoken_bpe(self, tiktoken_bpe_file: str): with open(tiktoken_bpe_file, "rb") as f: contents = f.read() return { base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line) } def bulid_tokenizer(self): mergeable_ranks = self._load_tiktoken_bpe(self.vocab_file) special_tokens = { token: index for index, token in enumerate( self.SPECIAL_TOKENS, start=len(mergeable_ranks) ) } encode = tiktoken.Encoding( "zhinao", pat_str=PAT_STR, mergeable_ranks=mergeable_ranks, special_tokens=special_tokens ) decoder = {v: k for k, v in mergeable_ranks.items()} decoder.update({v: k for k, v in special_tokens.items()}) decoder_token2id = {v: k for k, v in decoder.items()} self.tokenizer = encode self.decoder = decoder self.decoder_token2id = decoder_token2id self.num_tokens = len(mergeable_ranks) + len(self.SPECIAL_TOKENS) def output_core_token(self): """output special tokens""" out = {} for t in self.SPECIAL_TOKENS: out[t] = self.convert_token_to_id(t) return out def tokenize( self, text, allowed_special: Union[Set, str] = "all", disallowed_special: Union[Collection, str] = ()): tokens = [] text = self.convert(text) for idx in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special): tokens.append(self.decoder[idx]) return tokens def encode(self, text, allowed_special="all", disallowed_special=()): """text to id""" text = self.convert(text) return self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special) def decode(self, ids, errors="replace"): """id to text""" text = self.tokenizer.decode(ids, errors=errors) return self.deconvert(text) def decode_tokens(self, tokens: List[str]) -> str: """ Converts a sequence of tokens in a single string. """ text = "" temp = b"" for t in tokens: if isinstance(t, str): if temp: text += temp.decode("utf-8", errors="ignore") temp = b"" text += t elif isinstance(t, bytes): temp += t else: raise TypeError("token should only be of type bytes or str") if temp: text += temp.decode("utf-8", errors="ignore") return self.deconvert(text) def convert_id_to_token(self, idx): return self.decoder[idx] def convert_token_to_id(self, token): return self.decoder_token2id[token] def convert(self, text): """将文本的特殊字符转换成特殊token""" for k in ["[br]", "
"]: text = text.replace(k, "\n") for k in self.sorted_strs: if k in text: text = text.replace(k, self.str2tokens[k]) return text def deconvert(self, text): """将解码文本恢复原始字符""" for t in self.token2strs: if t in text: text = text.replace(t, self.token2strs[t]) return text class ZhinaoTokenizer(PreTrainedTokenizer): vocab_files_names = {"vocab_file": "vocab/360.tiktoken"} model_input_names = ["input_ids", "attention_mask"] def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs): self.name = "ZhinaoTokenizer" self.vocab_file = vocab_file self.tokenizer = SPTokenizer(model_path=vocab_file) try: kwargs.pop('eos_token') kwargs.pop('pad_token') kwargs.pop('unk_token') except: pass super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) self.pad_token_id = self.tokenizer.convert_token_to_id(self.tokenizer.pad_token) self.eod_id = self.tokenizer.convert_token_to_id(self.tokenizer.eod_token) self.im_start_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_start_token) self.im_end_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_end_token) @property def eop_token(self) -> str: return self.tokenizer.eop_token @property def eop_token_id(self): return self.tokenizer.convert_token_to_id(self.tokenizer.eop_token) @property def vocab_size(self): return self.tokenizer.num_tokens def get_vocab(self): """ Returns vocab as a dict """ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def tokenize( self, text: str, allowed_special: Union[Set, str] = "all", disallowed_special: Union[Collection, str] = (), split_special_tokens=False, ) -> List[Union[bytes, str]]: tokens = [] for t in self.tokenizer.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special ): tokens.append(self.tokenizer.decoder[t]) return tokens def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, errors: str = "ignore", **kwargs, ) -> str: if isinstance(token_ids, int): token_ids = [token_ids] if skip_special_tokens: token_ids = [i for i in token_ids if i not in self.tokenizer.decode_skip_special_tokens_ids] return self.tokenizer.decode(token_ids, errors=errors) def _tokenize(self, text, **kwargs): raise NotImplementedError def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.tokenizer.convert_token_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab. """ return self.tokenizer.convert_id_to_token(index) def convert_tokens_to_string(self, tokens: List[str]) -> str: """ Converts a sequence of tokens in a single string. """ return self.tokenizer.decode_tokens(tokens) def save_vocabulary(self, save_directory, filename_prefix=None): """Save only the vocabulary of the tokenizer (vocabulary). """ if os.path.isdir(save_directory): vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"]) else: vocab_file = save_directory with open(self.vocab_file, 'rb') as fin: proto_str = fin.read() os.makedirs(save_directory + "/vocab", exist_ok=True) with open(vocab_file, "wb") as writer: writer.write(proto_str) return (vocab_file,)