qilowoq commited on
Commit
fcb396a
·
1 Parent(s): c6293fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -2
README.md CHANGED
@@ -9,10 +9,37 @@ tags:
9
  - heavy chain
10
  - AbLang
11
  - CDR
 
12
  ---
13
 
14
- Sentence embeddings can be produced as follows:
15
 
16
  This is a huggingface version of AbLang: A language model for antibodies. It was introduced in
17
  [this paper](https://doi.org/10.1101/2022.01.20.477061) and first released in
18
- [this repository](https://github.com/oxpig/AbLang). This model is trained on uppercase amino acids: it only works with capital letter amino acids.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - heavy chain
10
  - AbLang
11
  - CDR
12
+ - OAS
13
  ---
14
 
15
+ # AbLang model for heavy chains
16
 
17
  This is a huggingface version of AbLang: A language model for antibodies. It was introduced in
18
  [this paper](https://doi.org/10.1101/2022.01.20.477061) and first released in
19
+ [this repository](https://github.com/oxpig/AbLang). This model is trained on uppercase amino acids: it only works with capital letter amino acids.
20
+
21
+
22
+ # Intended uses & limitations
23
+
24
+ The model could be used for protein feature extraction or to be fine-tuned on downstream tasks (TBA).
25
+
26
+ ### How to use
27
+
28
+ Here is how to use this model to get the features of a given protein sequence in PyTorch:
29
+
30
+ ```python
31
+ from transformers import BertModel, BertTokenizer
32
+
33
+ tokenizer = AutoTokenizer.from_pretrained('qilowoq/AbLang_heavy')
34
+ model = AutoModel.from_pretrained('qilowoq/AbLang_heavy', trust_remote_code=True)
35
+
36
+ sequence_Example = ' '.join("QIHLVQSGTEVKKPGSSVTVSCKAYGVNTFGLYAVNWVRQAPGQSLEYIGQIWRWKSSASHHFRGRVLISAVDLTGSSPPISSLEIKNLTSDDTAVYFCTTTSTYDKWSGLHHDGVMAFSSWGQGTLISVSAASTKGPSVFPLAPSSGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSTQTYICNVNHKPSNTKVDKKVEPK")
37
+ encoded_input = tokenizer(sequence_Example, return_tensors='pt')
38
+ model_output = model(encoded_input)
39
+ ```
40
+
41
+ Sentence embeddings can be produced as follows:
42
+
43
+ ```python
44
+ seq_embs = model_output.last_hidden_state[:, 0, :]
45
+ ```