--- license: mit language: - zh tags: - mental health - psychology - medical --- ## Quick Start ```Python from transformers import AutoTokenizer, AutoModel def get_dialogue_history(dialogue_history_list: list): dialogue_history_tmp = [] for item in dialogue_history_list: if item['role'] == 'counselor': text = '咨询师:'+ item['content'] else: text = '来访者:'+ item['content'] dialogue_history_tmp.append(text) dialogue_history = '\n'.join(dialogue_history_tmp) return dialogue_history + '\n' + '咨询师:' def get_instruction(dialogue_history): instruction = f'''现在你扮演一位专业的心理咨询师,你具备丰富的心理学和心理健康知识。你擅长运用多种心理咨询技巧,例如认知行为疗法原则、动机访谈技巧和解决问题导向的短期疗法。以温暖亲切的语气,展现出共情和对来访者感受的深刻理解。以自然的方式与来访者进行对话,避免过长或过短的回应,确保回应流畅且类似人类的对话。提供深层次的指导和洞察,使用具体的心理概念和例子帮助来访者更深入地探索思想和感受。避免教导式的回应,更注重共情和尊重来访者的感受。根据来访者的反馈调整回应,确保回应贴合来访者的情境和需求。请为以下的对话生成一个回复。 对话: {dialogue_history}''' return instruction tokenizer = AutoTokenizer.from_pretrained('qiuhuachuan/PsyChat', trust_remote_code=True) model = AutoModel.from_pretrained('qiuhuachuan/PsyChat', trust_remote_code=True).half().cuda() model = model.eval() dialogue_history_list = [] while True: usr_msg = input('来访者:') if usr_msg == '0': exit() else: dialogue_history_list.append({ 'role': 'client', 'content': usr_msg }) dialogue_history = get_dialogue_history(dialogue_history_list=dialogue_history_list) instruction = get_instruction(dialogue_history=dialogue_history) response, history = model.chat(tokenizer, instruction, history=[], temperature=0.8, top_p=0.8) print(f'咨询师:{response}') dialogue_history_list.append({ 'role': 'counselor', 'content': response }) ``` ```bibtex @INPROCEEDINGS{10580641, author={Qiu, Huachuan and Li, Anqi and Ma, Lizhi and Lan, Zhenzhong}, booktitle={2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD)}, title={PsyChat: A Client-Centric Dialogue System for Mental Health Support}, year={2024}, volume={}, number={}, pages={2979-2984}, keywords={Employee welfare;Accuracy;Federated learning;Focusing;Mental health;Generators;dialogue system;client-centric;mental health support;client behavior recognition;counselor strategy selection}, doi={10.1109/CSCWD61410.2024.10580641}} ```