whisper-small-multilingual-spoken-ner-end2end-lora / logs /whisper-spoken-ner-small-e2e-lora.err
Quentin Meeus
Finetune E2E NER model for 5000 steps with LoRA
9aefa35
Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: True
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py:1070: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
[INFO|configuration_utils.py:737] 2024-01-08 11:04:51,653 >> loading configuration file configs/whisper_small_ner.json
[INFO|configuration_utils.py:802] 2024-01-08 11:04:51,654 >> Model config WhisperConfig {
"_name_or_path": "configs/whisper_small_ner.json",
"activation_dropout": 0.0,
"activation_function": "gelu",
"adaptor_layernorm": true,
"apply_spec_augment": false,
"architectures": [
"WhisperForConditionalGeneration"
],
"attention_dropout": 0.0,
"begin_suppress_tokens": [
220,
50257
],
"bos_token_id": 50257,
"classifier_proj_size": 256,
"d_model": 768,
"decoder_attention_heads": 12,
"decoder_ffn_dim": 3072,
"decoder_layerdrop": 0.0,
"decoder_layers": 12,
"decoder_start_token_id": 50258,
"dropout": 0.0,
"encoder_attention_heads": 12,
"encoder_ffn_dim": 3072,
"encoder_layerdrop": 0.0,
"encoder_layers": 12,
"eos_token_id": 50257,
"forced_decoder_ids": [
[
1,
50259
],
[
2,
50359
],
[
3,
50363
]
],
"init_std": 0.02,
"is_encoder_decoder": true,
"mask_feature_length": 10,
"mask_feature_min_masks": 0,
"mask_feature_prob": 0.0,
"mask_time_length": 10,
"mask_time_min_masks": 2,
"mask_time_prob": 0.05,
"max_length": 448,
"max_source_positions": 1500,
"max_target_positions": 448,
"median_filter_width": 7,
"model_type": "whisper",
"num_hidden_layers": 12,
"num_mel_bins": 80,
"pad_token_id": 50257,
"scale_embedding": false,
"slu_attention_heads": 12,
"slu_dropout": 0.3,
"slu_embed_dim": 768,
"slu_focus": 1.0,
"slu_input_from": "decoder",
"slu_input_layers": -1,
"slu_layers": 2,
"slu_output_dim": 37,
"slu_weight": 1.0,
"suppress_tokens": [
1,
2,
7,
8,
9,
10,
14,
25,
26,
27,
28,
29,
31,
58,
59,
60,
61,
62,
63,
90,
91,
92,
93,
359,
503,
522,
542,
873,
893,
902,
918,
922,
931,
1350,
1853,
1982,
2460,
2627,
3246,
3253,
3268,
3536,
3846,
3961,
4183,
4667,
6585,
6647,
7273,
9061,
9383,
10428,
10929,
11938,
12033,
12331,
12562,
13793,
14157,
14635,
15265,
15618,
16553,
16604,
18362,
18956,
20075,
21675,
22520,
26130,
26161,
26435,
28279,
29464,
31650,
32302,
32470,
36865,
42863,
47425,
49870,
50254,
50258,
50360,
50361,
50362
],
"task": "token_classification",
"torch_dtype": "float32",
"transformers_version": "4.37.0.dev0",
"use_cache": true,
"use_crf": false,
"use_weighted_layer_sum": false,
"vocab_size": 51865
}
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/transformers/models/auto/feature_extraction_auto.py:328: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
[INFO|feature_extraction_utils.py:537] 2024-01-08 11:04:51,810 >> loading configuration file preprocessor_config.json from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/preprocessor_config.json
[INFO|feature_extraction_utils.py:579] 2024-01-08 11:04:51,814 >> Feature extractor WhisperFeatureExtractor {
"chunk_length": 30,
"feature_extractor_type": "WhisperFeatureExtractor",
"feature_size": 80,
"hop_length": 160,
"n_fft": 400,
"n_samples": 480000,
"nb_max_frames": 3000,
"padding_side": "right",
"padding_value": 0.0,
"processor_class": "WhisperProcessor",
"return_attention_mask": false,
"sampling_rate": 16000
}
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1899: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
[INFO|tokenization_utils_base.py:2026] 2024-01-08 11:04:51,980 >> loading file vocab.json from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/vocab.json
[INFO|tokenization_utils_base.py:2026] 2024-01-08 11:04:51,980 >> loading file tokenizer.json from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/tokenizer.json
[INFO|tokenization_utils_base.py:2026] 2024-01-08 11:04:51,980 >> loading file merges.txt from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/merges.txt
[INFO|tokenization_utils_base.py:2026] 2024-01-08 11:04:51,980 >> loading file normalizer.json from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/normalizer.json
[INFO|tokenization_utils_base.py:2026] 2024-01-08 11:04:51,980 >> loading file added_tokens.json from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/added_tokens.json
[INFO|tokenization_utils_base.py:2026] 2024-01-08 11:04:51,980 >> loading file special_tokens_map.json from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/special_tokens_map.json
[INFO|tokenization_utils_base.py:2026] 2024-01-08 11:04:51,980 >> loading file tokenizer_config.json from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/tokenizer_config.json
[WARNING|tokenization_utils_base.py:2140] 2024-01-08 11:04:51,980 >> The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization.
The tokenizer class you load from this checkpoint is 'WhisperTokenizer'.
The class this function is called from is 'NERTokenizerEndToEndFast'.
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/transformers/modeling_utils.py:2790: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.
warnings.warn(
[INFO|modeling_utils.py:2940] 2024-01-08 11:04:53,037 >> Overriding torch_dtype=None with `torch_dtype=torch.float16` due to requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass torch_dtype=torch.float16 to remove this warning.
[INFO|modeling_utils.py:2950] 2024-01-08 11:04:53,037 >> The device_map was not initialized. Setting device_map to {'':torch.cuda.current_device()}. If you want to use the model for inference, please set device_map ='auto'
[INFO|modeling_utils.py:3376] 2024-01-08 11:04:53,143 >> loading weights file model.safetensors from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/model.safetensors
[INFO|modeling_utils.py:1366] 2024-01-08 11:04:53,159 >> Instantiating WhisperForConditionalGeneration model under default dtype torch.float16.
[INFO|configuration_utils.py:826] 2024-01-08 11:04:53,161 >> Generate config GenerationConfig {
"begin_suppress_tokens": [
220,
50257
],
"bos_token_id": 50257,
"decoder_start_token_id": 50258,
"eos_token_id": 50257,
"forced_decoder_ids": [
[
1,
50259
],
[
2,
50359
],
[
3,
50363
]
],
"max_length": 448,
"pad_token_id": 50257
}
[INFO|modeling_utils.py:3513] 2024-01-08 11:04:53,182 >> Detected 8-bit loading: activating 8-bit loading for this model
[INFO|modeling_utils.py:4227] 2024-01-08 11:04:54,125 >> All model checkpoint weights were used when initializing WhisperForConditionalGeneration.
[INFO|modeling_utils.py:4235] 2024-01-08 11:04:54,126 >> All the weights of WhisperForConditionalGeneration were initialized from the model checkpoint at openai/whisper-small.
If your task is similar to the task the model of the checkpoint was trained on, you can already use WhisperForConditionalGeneration for predictions without further training.
[INFO|configuration_utils.py:781] 2024-01-08 11:04:54,237 >> loading configuration file generation_config.json from cache at /esat/audioslave/qmeeus/.cache/huggingface/hub/models--openai--whisper-small/snapshots/e34e8ae444c29815eca53e11383ea13b2e362eb0/generation_config.json
[INFO|configuration_utils.py:826] 2024-01-08 11:04:54,237 >> Generate config GenerationConfig {
"alignment_heads": [
[
5,
3
],
[
5,
9
],
[
8,
0
],
[
8,
4
],
[
8,
7
],
[
8,
8
],
[
9,
0
],
[
9,
7
],
[
9,
9
],
[
10,
5
]
],
"begin_suppress_tokens": [
220,
50257
],
"bos_token_id": 50257,
"decoder_start_token_id": 50258,
"eos_token_id": 50257,
"forced_decoder_ids": [
[
1,
null
],
[
2,
50359
]
],
"is_multilingual": true,
"lang_to_id": {
"<|af|>": 50327,
"<|am|>": 50334,
"<|ar|>": 50272,
"<|as|>": 50350,
"<|az|>": 50304,
"<|ba|>": 50355,
"<|be|>": 50330,
"<|bg|>": 50292,
"<|bn|>": 50302,
"<|bo|>": 50347,
"<|br|>": 50309,
"<|bs|>": 50315,
"<|ca|>": 50270,
"<|cs|>": 50283,
"<|cy|>": 50297,
"<|da|>": 50285,
"<|de|>": 50261,
"<|el|>": 50281,
"<|en|>": 50259,
"<|es|>": 50262,
"<|et|>": 50307,
"<|eu|>": 50310,
"<|fa|>": 50300,
"<|fi|>": 50277,
"<|fo|>": 50338,
"<|fr|>": 50265,
"<|gl|>": 50319,
"<|gu|>": 50333,
"<|haw|>": 50352,
"<|ha|>": 50354,
"<|he|>": 50279,
"<|hi|>": 50276,
"<|hr|>": 50291,
"<|ht|>": 50339,
"<|hu|>": 50286,
"<|hy|>": 50312,
"<|id|>": 50275,
"<|is|>": 50311,
"<|it|>": 50274,
"<|ja|>": 50266,
"<|jw|>": 50356,
"<|ka|>": 50329,
"<|kk|>": 50316,
"<|km|>": 50323,
"<|kn|>": 50306,
"<|ko|>": 50264,
"<|la|>": 50294,
"<|lb|>": 50345,
"<|ln|>": 50353,
"<|lo|>": 50336,
"<|lt|>": 50293,
"<|lv|>": 50301,
"<|mg|>": 50349,
"<|mi|>": 50295,
"<|mk|>": 50308,
"<|ml|>": 50296,
"<|mn|>": 50314,
"<|mr|>": 50320,
"<|ms|>": 50282,
"<|mt|>": 50343,
"<|my|>": 50346,
"<|ne|>": 50313,
"<|nl|>": 50271,
"<|nn|>": 50342,
"<|no|>": 50288,
"<|oc|>": 50328,
"<|pa|>": 50321,
"<|pl|>": 50269,
"<|ps|>": 50340,
"<|pt|>": 50267,
"<|ro|>": 50284,
"<|ru|>": 50263,
"<|sa|>": 50344,
"<|sd|>": 50332,
"<|si|>": 50322,
"<|sk|>": 50298,
"<|sl|>": 50305,
"<|sn|>": 50324,
"<|so|>": 50326,
"<|sq|>": 50317,
"<|sr|>": 50303,
"<|su|>": 50357,
"<|sv|>": 50273,
"<|sw|>": 50318,
"<|ta|>": 50287,
"<|te|>": 50299,
"<|tg|>": 50331,
"<|th|>": 50289,
"<|tk|>": 50341,
"<|tl|>": 50348,
"<|tr|>": 50268,
"<|tt|>": 50351,
"<|uk|>": 50280,
"<|ur|>": 50290,
"<|uz|>": 50337,
"<|vi|>": 50278,
"<|yi|>": 50335,
"<|yo|>": 50325,
"<|zh|>": 50260
},
"max_initial_timestamp_index": 1,
"max_length": 448,
"no_timestamps_token_id": 50363,
"pad_token_id": 50257,
"return_timestamps": false,
"suppress_tokens": [
1,
2,
7,
8,
9,
10,
14,
25,
26,
27,
28,
29,
31,
58,
59,
60,
61,
62,
63,
90,
91,
92,
93,
359,
503,
522,
542,
873,
893,
902,
918,
922,
931,
1350,
1853,
1982,
2460,
2627,
3246,
3253,
3268,
3536,
3846,
3961,
4183,
4667,
6585,
6647,
7273,
9061,
9383,
10428,
10929,
11938,
12033,
12331,
12562,
13793,
14157,
14635,
15265,
15618,
16553,
16604,
18362,
18956,
20075,
21675,
22520,
26130,
26161,
26435,
28279,
29464,
31650,
32302,
32470,
36865,
42863,
47425,
49870,
50254,
50258,
50358,
50359,
50360,
50361,
50362
],
"task_to_id": {
"transcribe": 50359,
"translate": 50358
}
}
Resize embeddings to account for the new tokens
[INFO|modeling_utils.py:1839] 2024-01-08 11:04:54,310 >> You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 51885. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
PeftModel(
(base_model): LoraModel(
(model): WhisperForConditionalGeneration(
(model): WhisperModel(
(encoder): WhisperEncoder(
(conv1): Conv1d(80, 768, kernel_size=(3,), stride=(1,), padding=(1,))
(conv2): Conv1d(768, 768, kernel_size=(3,), stride=(2,), padding=(1,))
(embed_positions): Embedding(1500, 768)
(layers): ModuleList(
(0-11): 12 x WhisperEncoderLayer(
(self_attn): WhisperAttention(
(k_proj): Linear8bitLt(in_features=768, out_features=768, bias=False)
(v_proj): Linear8bitLt(in_features=768, out_features=768, bias=True)
(q_proj): Linear8bitLt(in_features=768, out_features=768, bias=True)
(out_proj): Linear8bitLt(in_features=768, out_features=768, bias=True)
)
(self_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(activation_fn): GELUActivation()
(fc1): Linear8bitLt(in_features=768, out_features=3072, bias=True)
(fc2): Linear8bitLt(in_features=3072, out_features=768, bias=True)
(final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
(layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
(decoder): WhisperDecoder(
(embed_tokens): ModulesToSaveWrapper(
(original_module): Embedding(51885, 768)
(modules_to_save): ModuleDict(
(default): Embedding(51885, 768)
)
)
(embed_positions): WhisperPositionalEmbedding(448, 768)
(layers): ModuleList(
(0-11): 12 x WhisperDecoderLayer(
(self_attn): WhisperAttention(
(k_proj): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=768, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(v_proj): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=768, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(q_proj): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=768, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(out_proj): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=768, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
)
(activation_fn): GELUActivation()
(self_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(encoder_attn): WhisperAttention(
(k_proj): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=768, bias=False)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(v_proj): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=768, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(q_proj): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=768, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(out_proj): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=768, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
)
(encoder_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(fc1): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=768, out_features=3072, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=768, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=3072, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(fc2): lora.Linear8bitLt(
(base_layer): Linear8bitLt(in_features=3072, out_features=768, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=3072, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=768, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
(layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
(proj_out): Linear(in_features=768, out_features=51885, bias=False)
)
)
)
trainable params: 41,764,608 || all params: 283,514,880 || trainable%: 14.731010943764222
[INFO|feature_extraction_utils.py:425] 2024-01-08 11:04:55,231 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/preprocessor_config.json
[INFO|tokenization_utils_base.py:2432] 2024-01-08 11:04:55,262 >> tokenizer config file saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tokenizer_config.json
[INFO|tokenization_utils_base.py:2441] 2024-01-08 11:04:55,263 >> Special tokens file saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/special_tokens_map.json
[INFO|configuration_utils.py:483] 2024-01-08 11:04:55,319 >> Configuration saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/config.json
[INFO|image_processing_utils.py:373] 2024-01-08 11:04:55,320 >> loading configuration file /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/preprocessor_config.json
[INFO|feature_extraction_utils.py:535] 2024-01-08 11:04:55,320 >> loading configuration file /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/preprocessor_config.json
[INFO|feature_extraction_utils.py:579] 2024-01-08 11:04:55,320 >> Feature extractor WhisperFeatureExtractor {
"chunk_length": 30,
"feature_extractor_type": "WhisperFeatureExtractor",
"feature_size": 80,
"hop_length": 160,
"n_fft": 400,
"n_samples": 480000,
"nb_max_frames": 3000,
"padding_side": "right",
"padding_value": 0.0,
"processor_class": "WhisperProcessor",
"return_attention_mask": false,
"sampling_rate": 16000
}
[INFO|tokenization_utils_base.py:2024] 2024-01-08 11:04:55,323 >> loading file vocab.json
[INFO|tokenization_utils_base.py:2024] 2024-01-08 11:04:55,323 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2024] 2024-01-08 11:04:55,323 >> loading file merges.txt
[INFO|tokenization_utils_base.py:2024] 2024-01-08 11:04:55,323 >> loading file normalizer.json
[INFO|tokenization_utils_base.py:2024] 2024-01-08 11:04:55,323 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2024] 2024-01-08 11:04:55,323 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2024] 2024-01-08 11:04:55,323 >> loading file tokenizer_config.json
[WARNING|tokenization_utils_base.py:2140] 2024-01-08 11:04:55,325 >> The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization.
The tokenizer class you load from this checkpoint is 'NERTokenizerEndToEnd'.
The class this function is called from is 'WhisperTokenizer'.
[WARNING|logging.py:314] 2024-01-08 11:04:55,408 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[INFO|trainer.py:522] 2024-01-08 11:04:55,409 >> max_steps is given, it will override any value given in num_train_epochs
[INFO|trainer.py:571] 2024-01-08 11:04:55,409 >> Using auto half precision backend
[INFO|trainer.py:718] 2024-01-08 11:04:55,537 >> The following columns in the training set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:1712] 2024-01-08 11:04:55,580 >> ***** Running training *****
[INFO|trainer.py:1713] 2024-01-08 11:04:55,580 >> Num examples = 71,615
[INFO|trainer.py:1714] 2024-01-08 11:04:55,580 >> Num Epochs = 9
[INFO|trainer.py:1715] 2024-01-08 11:04:55,580 >> Instantaneous batch size per device = 32
[INFO|trainer.py:1718] 2024-01-08 11:04:55,580 >> Total train batch size (w. parallel, distributed & accumulation) = 128
[INFO|trainer.py:1719] 2024-01-08 11:04:55,580 >> Gradient Accumulation steps = 4
[INFO|trainer.py:1720] 2024-01-08 11:04:55,580 >> Total optimization steps = 5,000
[INFO|trainer.py:1721] 2024-01-08 11:04:55,582 >> Number of trainable parameters = 41,764,608
[INFO|integration_utils.py:722] 2024-01-08 11:04:55,585 >> Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"
wandb: Currently logged in as: qmeeus. Use `wandb login --relogin` to force relogin
wandb: wandb version 0.16.1 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.15.12
wandb: Run data is saved locally in /esat/audioslave/qmeeus/repos/peft/examples/whisper_slu/wandb/run-20240108_110457-pwws6pgg
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run happy-shape-146
wandb: ⭐️ View project at https://wandb.ai/qmeeus/WhisperForSpokenNER
wandb: πŸš€ View run at https://wandb.ai/qmeeus/WhisperForSpokenNER/runs/pwws6pgg
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[WARNING|logging.py:329] 2024-01-08 11:04:59,883 >> `use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`...
[INFO|trainer.py:718] 2024-01-08 11:52:18,771 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 11:52:18,774 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 11:52:18,774 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 11:52:18,774 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 12:14:26,632 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-200
[INFO|feature_extraction_utils.py:425] 2024-01-08 12:14:27,736 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-200/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 13:01:56,790 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 13:01:56,792 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 13:01:56,792 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 13:01:56,792 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 13:22:35,296 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-400
[INFO|feature_extraction_utils.py:425] 2024-01-08 13:22:35,942 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-400/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 14:09:59,237 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 14:09:59,239 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 14:09:59,240 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 14:09:59,240 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 14:23:49,977 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-600
[INFO|feature_extraction_utils.py:425] 2024-01-08 14:23:50,563 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-600/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 15:11:21,439 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 15:11:21,441 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 15:11:21,442 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 15:11:21,442 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 15:23:24,665 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-800
[INFO|feature_extraction_utils.py:425] 2024-01-08 15:23:25,269 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-800/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 16:10:48,253 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 16:10:48,255 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 16:10:48,255 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 16:10:48,255 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 16:21:24,766 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1000
[INFO|feature_extraction_utils.py:425] 2024-01-08 16:21:25,353 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1000/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 17:08:44,996 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 17:08:44,998 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 17:08:44,998 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 17:08:44,998 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 17:19:01,716 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1200
[INFO|feature_extraction_utils.py:425] 2024-01-08 17:19:02,300 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1200/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 18:06:20,117 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 18:06:20,119 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 18:06:20,119 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 18:06:20,119 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 18:16:34,445 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1400
[INFO|feature_extraction_utils.py:425] 2024-01-08 18:16:35,039 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1400/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 19:03:59,252 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 19:03:59,254 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 19:03:59,254 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 19:03:59,254 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 19:14:16,766 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1600
[INFO|feature_extraction_utils.py:425] 2024-01-08 19:14:17,339 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1600/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 20:01:40,919 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 20:01:40,921 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 20:01:40,921 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 20:01:40,921 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 20:12:01,672 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1800
[INFO|feature_extraction_utils.py:425] 2024-01-08 20:12:02,230 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-1800/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 20:59:23,021 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 20:59:23,023 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 20:59:23,023 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 20:59:23,023 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 21:09:48,958 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2000
[INFO|feature_extraction_utils.py:425] 2024-01-08 21:09:49,754 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2000/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 21:57:16,746 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 21:57:16,748 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 21:57:16,748 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 21:57:16,748 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 22:07:51,020 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2200
[INFO|feature_extraction_utils.py:425] 2024-01-08 22:07:51,610 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2200/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 22:55:16,722 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 22:55:16,724 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 22:55:16,725 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 22:55:16,725 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-08 23:05:32,086 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2400
[INFO|feature_extraction_utils.py:425] 2024-01-08 23:05:32,656 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2400/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-08 23:52:52,778 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-08 23:52:52,780 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-08 23:52:52,780 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-08 23:52:52,780 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 00:03:21,033 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2600
[INFO|feature_extraction_utils.py:425] 2024-01-09 00:03:21,665 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2600/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 00:50:41,209 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 00:50:41,212 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 00:50:41,212 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 00:50:41,212 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 01:00:54,242 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2800
[INFO|feature_extraction_utils.py:425] 2024-01-09 01:00:54,841 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-2800/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 01:48:21,353 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 01:48:21,355 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 01:48:21,355 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 01:48:21,355 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 01:58:50,224 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3000
[INFO|feature_extraction_utils.py:425] 2024-01-09 01:58:50,832 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3000/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 02:46:15,949 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 02:46:15,952 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 02:46:15,953 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 02:46:15,953 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 02:56:43,336 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3200
[INFO|feature_extraction_utils.py:425] 2024-01-09 02:56:43,939 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3200/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 03:43:53,333 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 03:43:53,335 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 03:43:53,335 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 03:43:53,335 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 03:53:50,834 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3400
[INFO|feature_extraction_utils.py:425] 2024-01-09 03:53:51,418 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3400/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 04:40:53,943 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 04:40:53,945 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 04:40:53,945 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 04:40:53,945 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 04:50:57,328 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3600
[INFO|feature_extraction_utils.py:425] 2024-01-09 04:50:57,938 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3600/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 05:38:00,576 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 05:38:00,578 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 05:38:00,578 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 05:38:00,578 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 05:47:48,535 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3800
[INFO|feature_extraction_utils.py:425] 2024-01-09 05:47:49,128 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-3800/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 06:34:48,377 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 06:34:48,379 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 06:34:48,379 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 06:34:48,379 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 06:44:39,057 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4000
[INFO|feature_extraction_utils.py:425] 2024-01-09 06:44:39,679 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4000/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 07:31:41,732 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 07:31:41,734 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 07:31:41,735 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 07:31:41,735 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 07:41:28,691 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4200
[INFO|feature_extraction_utils.py:425] 2024-01-09 07:41:29,297 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4200/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 08:28:32,720 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 08:28:32,722 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 08:28:32,723 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 08:28:32,723 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 08:38:23,039 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4400
[INFO|feature_extraction_utils.py:425] 2024-01-09 08:38:23,606 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4400/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 09:25:25,423 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 09:25:25,425 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 09:25:25,426 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 09:25:25,426 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 09:35:16,052 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4600
[INFO|feature_extraction_utils.py:425] 2024-01-09 09:35:16,635 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4600/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 10:22:49,334 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 10:22:49,336 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 10:22:49,336 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 10:22:49,336 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 10:32:42,825 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4800
[INFO|feature_extraction_utils.py:425] 2024-01-09 10:32:43,402 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-4800/preprocessor_config.json
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
[INFO|trainer.py:718] 2024-01-09 11:20:29,411 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 11:20:29,413 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 11:20:29,413 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 11:20:29,413 >> Batch size = 16
[INFO|trainer.py:2895] 2024-01-09 11:30:34,161 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-5000
[INFO|feature_extraction_utils.py:425] 2024-01-09 11:30:34,756 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/tmp-checkpoint-5000/preprocessor_config.json
[INFO|trainer.py:1953] 2024-01-09 11:30:35,705 >>
Training completed. Do not forget to share your model on huggingface.co/models =)
[INFO|trainer.py:2895] 2024-01-09 11:30:35,710 >> Saving model checkpoint to /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora
[INFO|feature_extraction_utils.py:425] 2024-01-09 11:30:36,330 >> Feature extractor saved in /esat/audioslave/qmeeus/exp/whisper_slu/e2e/whisper-small-spoken-ner-lora/preprocessor_config.json
[INFO|trainer.py:718] 2024-01-09 11:30:36,338 >> The following columns in the evaluation set don't have a corresponding argument in `PeftModel.forward` and have been ignored: input_length. If input_length are not expected by `PeftModel.forward`, you can safely ignore this message.
[INFO|trainer.py:3199] 2024-01-09 11:30:36,341 >> ***** Running Evaluation *****
[INFO|trainer.py:3201] 2024-01-09 11:30:36,341 >> Num examples = 1000
[INFO|trainer.py:3204] 2024-01-09 11:30:36,341 >> Batch size = 16
/users/spraak/qmeeus/micromamba/envs/torch-cu121/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
wandb: Waiting for W&B process to finish... (success).
wandb:
wandb: Run history:
wandb: eval/loss β–ˆβ–„β–‚β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–
wandb: eval/runtime β–ˆβ–‡β–ƒβ–‚β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–
wandb: eval/samples_per_second β–β–β–„β–†β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ
wandb: eval/steps_per_second β–β–β–„β–†β–‡β–‡β–ˆβ–‡β–‡β–‡β–‡β–‡β–‡β–ˆβ–‡β–‡β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ
wandb: eval/wer β–ˆβ–ƒβ–β–β–β–β–β–β–β–β–‚β–β–β–β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚β–‚
wandb: train/epoch β–β–β–β–β–‚β–‚β–‚β–‚β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–„β–„β–„β–…β–…β–…β–…β–…β–…β–†β–†β–†β–†β–†β–‡β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆβ–ˆβ–ˆ
wandb: train/global_step β–β–β–β–β–‚β–‚β–‚β–‚β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–„β–„β–„β–…β–…β–…β–…β–…β–…β–†β–†β–†β–†β–†β–‡β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆβ–ˆβ–ˆ
wandb: train/learning_rate β–‚β–„β–…β–‡β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‡β–‡β–‡β–‡β–‡β–†β–†β–†β–†β–…β–…β–…β–„β–„β–„β–ƒβ–ƒβ–ƒβ–ƒβ–‚β–‚β–‚β–‚β–‚β–β–β–β–β–β–
wandb: train/loss β–ˆβ–†β–„β–ƒβ–‚β–‚β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–
wandb: train/total_flos ▁
wandb: train/train_loss ▁
wandb: train/train_runtime ▁
wandb: train/train_samples_per_second ▁
wandb: train/train_steps_per_second ▁
wandb:
wandb: Run summary:
wandb: eval/loss 0.33808
wandb: eval/runtime 601.5847
wandb: eval/samples_per_second 1.662
wandb: eval/steps_per_second 0.105
wandb: eval/wer 0.38886
wandb: train/epoch 8.94
wandb: train/global_step 5000
wandb: train/learning_rate 0.0
wandb: train/loss 0.3079
wandb: train/total_flos 1.8645896628338688e+20
wandb: train/train_loss 0.49281
wandb: train/train_runtime 87940.1228
wandb: train/train_samples_per_second 7.278
wandb: train/train_steps_per_second 0.057
wandb:
wandb: πŸš€ View run happy-shape-146 at: https://wandb.ai/qmeeus/WhisperForSpokenNER/runs/pwws6pgg
wandb: ️⚑ View job at https://wandb.ai/qmeeus/WhisperForSpokenNER/jobs/QXJ0aWZhY3RDb2xsZWN0aW9uOjEyNzk2NDY0Mw==/version_details/v2
wandb: Synced 5 W&B file(s), 0 media file(s), 2 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240108_110457-pwws6pgg/logs